Master Thesis Final Presentation Grupo de Aprendizaje de Máquinas en Biomedicina y Salud Centro de Informática Médica y Telemedicina

Reto Wettstein 23.10.2018

Real-Time Body Temperature and Heart Rate Monitoring System for Classification of Physiological Response Patterns Using Wearable Sensor and Machine Learning Technology

> Facultad de Medicina Universidad de Chile

Motivation

- Mobile Devices are an integral part of our lives
- Fitness trackers, smart watches

Facilitates continuous monitoring and analysis of personal vital signs

- Analysis and interpretation of this data is challenging:

• A subset of these devices has sensors that allow recording health data:

Physiological response patterns (PRP) vary from person to person

- PRP change based on activities, diseases or the environmental context

- PRP depend on demographic factors: age, gender, fitness level

Machine learning algorithms which learn to interpret a person's

Hypothesis

A real-time body temperature and heart rate monitoring system enables personalized classifications of physiological response patterns as either normal or abnormal.

Challenges

two main indicators:

- **1.** The quality of the measurements generated by a sensor
- 2. The performance of the applied machine learning algorithms

The thesis objectives must take this into account

The accuracy, sensitivity and specificity of such a system depends on

Objectives

- Evaluate the measurement quality of the chosen sensor and therefore its **(i)** suitability for real-time detection of changes in vital signs
- Develop an architectural concept of a distributed real-time monitoring and classification system
- Implement this architectural concept as a proof-of-concept prototype vital signs taking into account activities, demographic factors and the
- (iv) Show that MLAs can be used to learn the individual PRPs of a person's environmental context
- Show that MLAs can classify a tendency change of vital signs in **(V)** response patterns as physiologically normal or abnormal

Cosinuss^o **One Body Temperature Evaluation**

Discussion Cosinuss^o One

Advantages:

- Two vital signs in one device
- High quality of heart rate measurements
- Reasonable body temperature measurements in a stable environment
- Open source Bluetooth API & long battery life

Disadvantages:

- Body temperature measurements effected by the environment Differences to commercially available thermometer
- Long time wearing comfort
 - Heart rate measurements are reasonable

Body temperature measurements in the same environments behave mostly with the same tendency, i.e. have the same inaccuracy

Objectives

- and classification system
- environmental context
- response patterns as physiologically normal or abnormal

Evaluate the measurement quality of the chosen sensor and therefore its suitability for real-time detection of changes in vital signs

Develop an architectural concept of a distributed real-time monitoring

(iii) Implement this architectural concept as a proof-of-concept prototype (iv) Show that MLAs can be used to learn the individual PRPs of a person's vital signs taking into account activities, demographic factors and the

Show that MLAs can classify a tendency change of vital signs in

Architectural Concept

Display of Measurements

Vital Signs Measurements

> MOBILE APPLICATION

Prototype

Display Heart Rate / **Body Temperature**

Body Temperature Measurements

Heart Rate Measurements

> ANDROID **APPLICATION**

Discussion System Concept & Prototype

Advantages:

- System allows continuous monitoring of vital signs
- Resilience against network failures and user feedback as part of the concept
- REST and Bluetooth architecture in the prototype allow modularity, changeability and extensibility

Disadvantages:

- Mobile phone needed which can decrease freedom of movement
- Difference between concept and prototype:
 - No classification on the mobile device
 - Missing user feedback

changes in PRP

The system can continuously analyze and learn in real-time

Objectives

- - suitability for real-time detection of changes in vital signs

- and classification system
- environmental context
- response patterns as physiologically normal or abnormal

Evaluate the measurement quality of the chosen sensor and therefore its

Develop an architectural concept of a distributed real-time monitoring

Implement this architectural concept as a proof-of-concept prototype Show that MLAs can be used to learn the individual PRPs of a person's vital signs taking into account activities, demographic factors and the

Show that MLAs can classify a tendency change of vital signs in

Machine Learning Algorithms

Problem:

Abnormal health data cannot be generated by pressing a button, is different for every person and every circumstance, and is therefore unknown during training.

Consequence:

Supervised machine learning algorithms cannot be used. Only semi- and unsupervised algorithms for anomaly detection can be applied.

Algorithms:

- Local Outlier Factor
- Isolation Forest
- One-Class Support Vector Machine
- Autoencoder

Local Outlier Factor

- Density based approach
- Compare the local density of a point with the average density of the point's k nearest neighbors
- Low density point is an anomaly
- High density point belongs to the cluster

Isolation Forest

- Distance based approach
- instances
- Long path (>= average path) point normal data

Assembly of decision trees which isolate an instance from the rest of the other

Short path (< average path) => anomaly, since chance of isolation is higher

One-Class SVM

Based on normal SVM approach

SVM:

- Map nonlinear separable data from the input space to a higher dimensional feature space using a kernel function
- Linearly separate data by searching a hyperplane which optimizes the margin between the hyperplane and the support vectors

One-Class SVM:

 Search for a hyperplane that maximizes the distance between the data points and the origin

Support Vectors Margin о X2 ο Target class hyperplane o о ο o о Origin

Autoencoder

- neural networks
- important information
- Decoder: tries to reconstruct the original data from z
- the network
- Low reconstruction error promal data
- during training

Lossy compression technique based on feedforward multilayered artificial

Consists of an encoder and decoder network with symmetrical design • Encoder: tries to find a reduced representation z which stores the most

Reconstruction error: represents the difference between input and output of

• High reconstruction error anomaly, since this data type is not known

Autoencoder

System & Algorithm Evaluation

Data Generation:

- Measuring heart rate and body temperature for 72 hours every 5 seconds
- Generation of time series with length of 2 minutes:
 - Each time-series consist of 25 values of each vital sign
 - Supplemented by mean, standard deviation, hour and minute
 - Overlap of 30 seconds to not miss boundary events

What should be used as anomalous data?

Normal Labels:

- Sleeping
 Sitting
- Lying

- Walking

- Abnormal health data cannot be generated by pressing a button...
 - **Abnormal Labels:**
 - Sport
 Eating
 - Metro

System & Algorithm Evaluation

Training of Algorithms:

- Data driven approach supplemented by statistical features
- All normal labeled data as training data, except the same amount of abnormal data
- All abnormal labeled data as test data plus the same amount of normal data held out for training ratio 1:1 for normal and abnormal data Grid search for finding the best parameters

Evaluation of Algorithms:

- Calculation of accuracy, sensitivity and specificity using confusion matrices Overall result using all abnormal labeled data together Specific results for each type of abnormal data

Overall Results

Loc Outi Fact	AL LIER FOR	ISOLA For	TION EST	ONE-C SV	\mathbf{M}	AU7 ENCO	ГО- DER
- 1	+ 1	- 1	+ 1	- 1	+1	-1	+1
142	22	148	16	144	20	125	39
14	150	24	140	13	151	19	145
89.02	%	87.80) %	89.94	- %	82.32	2 %
86.59	%	90.24	- %	87.80) %	76.22	2 %
91.46	%	85.37	7 %	92.07	7 %	88.4	1 %

		OU1 Fac	LIER TOR	ISOL FOI	ATION REST	ONE- S	$\cdot CLASS$ VM	Auto- encoder		
Confusion		- 1	+1	- 1	+ 1	- 1	+ 1	- 1	+ 1	
Matrix	-1	142	22	148	16	144	20	125	39	
	+1	14	150	24	140	13	151	19	145	
Accuracy		$89.02 \ \%$		87.8	80 %	89.9	94~%	82.32~%		
Sensitivity		86.5	9~%	90.2	24 %	87.8	80 %	76.2	$22 \ \%$	
Specificity		91.4	6~%	85.3	87 %	92.0	07 %	88.4	$41 \ \%$	

Specific Results

		Sport		Metro		EATING					Sport		Metro		EATING		
	Confusion		-1	+1	-1	+1	-1	+1		Confusion		-1	+1	-1	+1	-1	+1
LOCAL OUTLIER FACTOR	Matrix	-1	63	1	37	15	42	6		Matrix	-1	64	0	45	7	35	13
		+1	6	58	5	47	3	45	$\begin{array}{c} \mathbf{O}\mathbf{NE-CLASS}\\ \mathbf{SVM} \end{array}$		+1	5	59	5	47	3	45
	Accuracy	Q		3~%	80.7	77%	90.6	53~%		Accuracy	:y		96.09~%		88.46~%	83.5	33 %
	Sensitivity		98.4	4 %	71.1	5 %	87.5	50~%		Sensitivity		100) %	86.5	4 %	72.9	92 %
	Specificity		90.6	3~%	90.3	88 %	93.7	75 %		Specificity		92.1	9 %	90.3	8 %	93.7	75 %
	Confination		-1	+1	-1	+1	-1	+1				-1	+1	-1	+1	-1	+1
	Matrix	-1	64	0	51	1	33	15		Confusion Matrix	-1	64	0	29	23	32	16
ISOLATION FOREST		+1	9	55	8	44	7	41	Auto- encoder		+1	7	57	6	46	6	42
	Accuracy		92.9	7~%	91.3	85 %	77.0)8 %		Accuracy		94.5	53~%	72.1	2 %	77.()8 %
	Sensitivity		100) %	98.0	08 %	68.7	75 %		Sensitivity		100) %	55.7	7~%	66.6	37 %
	Specificity		86.1	5 %	84.6	52~%	85.4	42 %		Specificity		89.0	6 %	88.4	6~%	87.5	50 %

Sport: One-Class SVM performed best Metro: Isolation Forest performed best Eating: Local Outlier Factor performed best

Discussion Machine Learning Algorithms

Advantages:

- Algorithms consider inequality of data distribution
- Fast computation using data driven approach allows time critical analysis
- Algorithms based on different mathematical approaches can be applied
- High accuracy, sensitivity and specificity for all types of anomalous data

Disadvantages:

- Most errors on the boundaries of activity change
- At least 1 minute (half of a time-series) of new activity measurements until a change is detected belayed correct classifications
- Threshold for anomalies can not be shifted and therefore there is no control over sensitivity and specificity (except for the Autoencoder)

• Accuracy of all algorithms over 80 %

Discussion Machine Learning Algorithms

Objectives

- - Evaluate the measurement quality of the chosen sensor and therefore its suitability for real-time detection of changes in vital signs
 - Develop an architectural concept of a distributed real-time monitoring and classification system

(V)

- (iv) Show that MLAs can be used to learn the individual PRPs of a person's vital signs taking into account activities, demographic factors and the environmental context
 - Show that MLAs can classify a tendency change of vital signs in response patterns as physiologically normal or abnormal

Implement this architectural concept as a proof-of-concept prototype

A real-time bod / temperaty and heart rate personalized ena ste esponse patterns hys al norm. or a normal.

monitoring sy classifications of as eithe

Hypothesis

But...

This thesis is subject to two limiting factors Experiments:

- The experiments to evaluate the Cosinuss $^{\circ}$ One sensor and the MLAs were only conducted on one person (N = 1)
- In order to obtain statistically meaningful results, the evaluations have to be conducted during the same scenarios on a bigger sample size (N > 1)

Machine Learning Algorithms:

- Accuracy, sensitivity and specificity of the MLAs have only been evaluated on regular medical data using different activities as the artificial anomalous counterpart
- This does not imply that the system will work for diseases as well

Outlook

Data Sources:

- Use more medical and non-medical data sources
- More available data for irregularity detection could improve algorithm results

System Extensions:

- Implement differences between prototype and concept Use smart watch instead of mobile phone
- Alarm hierarchy including third parties

Machine Learning Algorithms:

- Computing and using more statistical features
- Testing other algorithms and more sophisticated neural networks
- Playing with the analysis time frame

Thank You! Questions?

