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Abstract

Real-Time Body Temperature and Heart Rate Monitoring System for

Classification of Physiological Response Patterns Using Wearable Sensor

and Machine Learning Technology

by Reto Wettstein

Introduction: A subset of mobile devices allows recording of health data. This facil-

itates continuous monitoring and analysis of personal vital signs and opens the potential

for automated anomaly detection outside of clinical environments. An unobtrusive day-

to-day system could be used to detect anomalies caused by disease onset or to improve

quality of life for chronically ill patients. But, interpretation of sensor health data is

challenging. Physiological response patterns (PRP) depend on demographic factors and

are based on activities, diseases and the environmental context. Therefore, PRPs can

not be described in general terms. However, machine learning algorithms (MLA) could

be used to classify individual PRPs as either normal or abnormal.

Objectives: The objectives of this thesis were to develop an architectural concept of

a real-time monitoring and classification system based on the vital signs heart rate and

body temperature and to implement it as a proof-of-concept prototype. The prototype

should then be used to asses if MLAs can classify a tendency change of vital sign response

patterns as either physiologically normal or abnormal.

Methodology: The architectural concept and the prototype were developed using a

Cosinuss◦ One sensor, an Android application and a Python server. The selected MLAs

for anomaly detection are Local Outlier Factor, Isolation Forest, One-Class Support Vec-

tor Machine and Autoencoder. A 72 hour-long data sample was recorded for assessment

of these algorithms (N = 1). Since generation of irregular health data is not possible at

the push of a button, the measurements during the activities sport, metro and eating

were regarded as artificial anomalies. All the remaining measurements were considered

as normal. The MLAs were finally evaluated using confusion matrices to calculate the

metrics accuracy, sensitivity and specificity.

Results: The MLAs performed in all cases with an accuracy higher than 80 %. With

the exception of the Isolation Forest, specificity was higher than sensitivity. All algo-

rithms showed a specificity higher than 88 %. For sensitivity the MLAs reached results

better than 76 %. The best overall results were achieved using the One-Class Support

Vector Machine with 89.94 % accuracy, 87.80 % sensitivity and 92.07 % specificity.

Conclusion: This thesis introduces an approach for automated classification of PRPs

based on mobile sensor data. The prototype shows that different selected activities can

be classified as irregular using MLAs. Further research is needed to asses if also irregular-

ities caused by diseases can be detected with high accuracy, sensitivity and specificity.
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Chapter 1

Introduction

Mobile devices are becoming more and more an integral part of our lives [1] and are due

to steadily decreasing costs accessible for everyone [2]. According to CCS Insight [3],

the sale of wearable devices will increase in the next five years annually around 20 %,

therefore reaching a revenue of 29 billion US-Dollars by sells of more than 243 million

units in 2022. A subset of these devices (e.g. wearables like fitness trackers and smart

watches) have a series of sensors that allow recording of health data [4]. This facilitates

continuous monitoring and analysis of personal vital signs [5].

1.1 Motivation

Analysis and interpretation of data recorded by wearable devices is challenging [6]. Phys-

iological response patterns (PRP) corresponding to different activities, diseases or a

changing environmental context vary from person to person, depending on demographic

factors like age, gender, fitness level and other characteristics [7–10] and thus cannot be

described in general terms. Additionally, bad performance in analysis and interpretation

of this data can trigger unnecessary alarms and therefore lead to alarm fatigue of physi-

cians and nurses [11]. Moreover, early warning scores in non-critical clinical environments

are normally calculated three times a day thereby not caching early deterioration of a

patient’s health [12]. Further challenges arise due to the difficulty of accessing and col-

lecting vital signs associated to diseases and their impact on deterioration of health [6].

But, this data is needed to adjust, train and improve early warning systems.

Machine learning algorithms (MLA) open up the possibility to utilize the collected data

in personalized medicine [13], where an algorithm learns to interpret a person’s individual

PRPs. This interpretation can focus on the recognition of changes and trends in PRPs

1



Chapter 1. Introduction 2

and therefore eventually on signs of deterioration of an individual’s health status. As a

consequence, the combination of MLAs and continuous health data recording allows for

real-time classification systems of individual PRPs according to corresponding activities,

diseases and the environmental context. The system could act as an early warning system

in the case of detected abnormalities.

However, the accuracy, sensitivity and specificity of this approach depends on two main

indicators. First, on the quality of the measurements generated by the sensor. If the

sensor does not adequately reflect a person’s vital signs, the system will not be able to

detect abnormalities and thus trigger many false alarms or miss cases of health detori-

ation. And secondly, on the performance of the applied MLAs. As mentioned above,

collecting health data associated to diseases is difficult and therefore training data will

consist only of normal vital sings. For this reason only unsupervised and semi-supervised

classification algorithms can be considered for such systems. In general, they have worse

classification accuracies than supervised approaches [14].

1.2 Objectives

This thesis will focus on an early warning system as introduced in Section 1.1. The goal

is to develop a real-time classification system for health anomaly detection using vital

sign data produced by an in-ear wearable sensor and MLAs that learn continuously due

to a real-time user feedback loop. In order to achieve this goal, various objectives were

conceptualized, designed and executed. These objectives are:

(i) Evaluate the measurement quality of the chosen sensor and therefore its suitability

for real-time detection of changes in vital signs.

(ii) Develop an architectural concept of a distributed real-time monitoring and classi-

fication system.

(iii) Implement this architectural concept as a proof-of-concept prototype.

(iv) Show that MLAs can be used to learn the individual PRPs of a person’s vital signs

taking into account activities, demographic factors and the environmental context.

(v) Show that MLAs can classify a tendency change of vital signs in response patterns

as physiologically normal or abnormal.
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The architecture of the distributed real-time monitoring and classification system ((ii)

and (iii)) will consist of the following three major components:

(a) A wearable sensor for vital sign measurements (i.e. Cosinuss◦ One sensor measuring

body temperature and heart rate).

(b) A server component for storage of the measured vital signs and training of the

different MLAs (i.e. Python Django Server).

(c) A mobile application as a bridge between the sensor and the server component

which sends the measured training data to the server, applies the trained MLAs to

new measurements and displays their results (i.e. Android application).

These objectives have been selected in such a way that the implementation of this work

will make it possible to fully asses the following hypothesis:

A real-time body temperature and heart rate monitoring system enables per-

sonalized classifications of physiological response patterns as either normal or

abnormal.

1.3 Thesis Structure

The remainder of this thesis is structured as follows: In Chapter 2 the theoretical back-

ground of vital signs, their measurement and analysis using machine learning (ML) meth-

ods in clinical and non-clinical environments, the implementation of distributed systems

and ML for anomaly detection is established. After that, Chapter 3 walks the reader

through the applied methodology and the materials, libraries and tools used to develop

and test the various components of the proof-of-concept prototype. Chapter 4 presents

the architectural concept of the proposed system, its implementation in the proof-of-

concept prototype and the differences between these two. Then, in Chapter 5 the results

of the Cosinuss◦ One sensor evaluation and the performance of the selected MLAs are

presented. Afterwards, these results are discussed together with the architectural con-

cept and its implementation in Chapter 6 in order to assess the hypothesis presented

in this chapter. Finally, this thesis is completed by an extensive outlook about future

research topics in Chapter 7.





Chapter 2

Theoretical Background

This Chapter first introduces in Section 2.1 the basics of vital signs, especially heart rate

and body temperature, and their continuous monitoring in clinical and non-clinical envi-

ronments to create an understanding of the application domain and to develop awareness

with regard to the problem described in Chapter 1. Furthermore, previous heart rate

measurement evaluations of the chosen Cosinuss◦ One sensor are presented. In addition,

the development of distributed systems based on Bluetooth and Representational State

Transfer architectures using medical communication standards is discussed in Section 2.2.

After that, Sections 2.3 and 2.4 will introduce machine learning for anomaly detection

in order to explain the concepts of the technology with respect to the realization of the

proof-of-concept prototype.

2.1 Vital Signs

In hospitals, documentation and analysis of vital signs is crucial in order to detect the

deterioration of a patient’s health state as quickly as possible and subsequently to provide

effective treatment. Vital signs that are traditionally measured are body temperature,

heart rate, blood pressure, respiratory rate and blood oxygen saturation. [15] In recent

years it has also become popular in the general population to monitor personal health

using wearable devices. Among other things, these devices can serve as indicators to

help change one’s lifestyle, optimize workouts, prevent dangers or optimize sleeping be-

havior. [16]

The vital signs body temperature and heart rate are the ones measured by the selected

sensor and are therefore of importance for this thesis. They are discussed in more detail

in the following two sections.

5



Chapter 2. Theoretical Background 6

2.1.1 Body Temperature

A person’s body temperature (BT) is maintained using thermoregulation of hypothala-

mus functions by producing heat in the body’s tissues or releasing heat into the envi-

ronment through the skin. A healthy person’s core BT lays in the range of 36.0 ◦C to

37.5 ◦C. Within this range are fluctuations which are dependent on various factors. [17]

For one thing, the circadian rythm gives BT a 24h period. The highest BT is measured

in the late afternoon or early evening and the lowest in the early morning before waking

up. The approximate difference can be around 1 ◦C depending on various factors of BT

variability. This can be seen in Figure 2.1. Also, BT can vary during a womens menstrual

cycle and can therefore be used for fertility planning. If the BT is measured shortly after

waking up, an increase of 0.25-0.5 ◦C can be measured around the time of ovulation.

Moreover, increasing BT could be measured during high physical activity. People with

a general higher physical schedule have a lower BT limit in the circadian rythm. This

means that the difference between the daily minimum and maximum is greater than for

people who are generally less active. Additionally, in contrast to younger comparative

patients, the daily BT amplitude decreases with age. Last, studies suggest a variability

of BT depending on the time of the year. However, these results are inconsistent and

could have been influenced by other factors. [18]

Variations in BT measurements can be dependent on the measurement site and method.

The chosen site and method also influences convenience and reliability of measure-

ments. [18] It can be distinguished between invasive and non-invasive measurement meth-

ods. Non-invasive methods include oral, axillia, tympanic membrane and body surface

measurements. Invasive methods include rectal (gold standard), oesophagus, pulmonary

artery and urinary bladder measurements. Measurements of thermometers are thereby

based on thermistors, thermocouple sensors or infrared waves. [19]

Figure 2.1: Influence of the circadian rythm on body temperature, following [17].
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Exposure to high or low environmental temperatures can have an influence on BT and

lead to hyper- or hypothermia. Both cause untreated disabilities and can lead to death.

Hypothermia is the event where the BT drops below the normal range. Other reasons

for hypothermia include infections and bacteremia, ethanol or drug ingestion, a central

nervous system event, cachexia from malignancy or malnutrition, gastrointestinal bleed-

ing and endocrine deficiencies. A BT exceeding the normal range can be hyperthermia

or a fever. Hypothermia, sometimes as well called heat stroke, is induced by the body’s

inability to loose enough heat in comparison to an uncontrolled heat production. It can

be a common occurrence during prolonged stays in very hot and humid regions. Other

possible reasons for hyperthermia include neuroleptic malignant syndrome, serotonin

syndrome, endocrinopathy, cerebral hemorrhage, hypothalamic injury and drug-induced

hyperthermia. [20] Hyperthermia should not be confused with fever, which is a controlled

increase of BT induced by the hypothalamus thermoregulation. Reasons for fever include

viral and bacterial infections, microbial toxins, mediators of inflammation or immune re-

actions. [21]

2.1.2 Heart Rate

Heart rate (HR) measures the number of contractions of the heart as beats per minute

(bpm) and is regulated by the synchronous cooperation of the sympathetic and parasym-

pathetic nervous system [22]. A healthy person has a resting HR between 60 and

100 bpm. Athletic people tend to have a lower resting HR than 60 bpm, dropping

sometimes as low as 40 bpm. HR is adjusted depending on the physical activity and

therefore on the body’s need of oxygen and the removal of carbon dioxide. Various fac-

tors can change the HR based on the resting frequency. [23] The most important ones

are according to the American Health Association [23]:

• Air temperature: When temperature or humidity rises, the heart pumps a little

more blood so that the HR increases by 5 - 10 bpm.

• Body position: Regardless of the position (lying, sitting or standing), the HR is

usually the same, but can increase for a short time when the position is changed.

• Emotions: Emotions like stress, anxiety, happiness, sadness or pleasant and un-

pleasant surprises can lead to elevated HR.

• Body size: Obese people can have a higher resting HR.

• Medication use: Depending on the medication, HR can either increase (e.g. beta

blockers) or decrease (e.g. thyroid medication).
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HR can be measured either manually or using electronical devices. Manual measure-

ments are done by feeling and counting an artery’s pulsation. Best spots include the

radial artery at the wrist and the carotid artery at the neck. However, manual HR mea-

surements can be done at all body parts where an artery can be felt. [24] Measurements

using electronical devices are often based on electrocardiography by recording the electri-

cal activity of the heart and deriving the HR from its pattern. HR can also be calculated

by pulse oximeters, which use the optical method of photoplethysmography. Light of

the green or infrared spectrum is emitted into the blood and the reflected values are

measured. Due to the pulsation of the blood, the measurement of the reflected values is

also pulsating and can be used to derive the corresponding HR. [25] One special kind of

photoplethysmography is the circummission-method which is used in the selected sensor.

The method is documented in the dissertation of Rieger [26].

Changes in HR can also be triggered by diseases. A resting HR of constantly above 100

bpm is called tachycardia. Causes include damage to heart tissue from heart diseases,

congenital abnormality of the heart, anemia, smoking, fever, alcohol or drug abuse. [27]

If the HR is constantly beating less then the normal 60 - 100 bpm, we talk about brady-

cardia. It only represents a problem if not enough oxygen is distributed by the heart.

Causes include heart tissue damage related to aging, damage to heart tissues from heart

disease or heart attacks, myocarditis, imbalance of chemicals in the blood, such as potas-

sium or calcium, or obstructive sleep apnea. [28] Both, tachycardia and bradycardia, can

lead to heart failure, sudden cardiac arrest or death, tachycardia additionally to stroke.

2.1.3 Vital Signs Monitoring in Clinical Environments

The five vital signs mentioned in Section 2.1 are generally continuously monitored with

other parameters in clinical environments like the intensive care unit (ICU). In the most

common systems, deterioration of a patient’s health is detected if measured values exceed

upper or lower thresholds of value intervals regarded as normal. Additionally, data driven

and knowledge based rules are applied to detect irregularities. [29] Often more than 40

sources of alarms can be identified. The strength of an alarm then depends on the

magnitude of the threshold violation, the time and duration of the violation, and the

number of vital parameters that trigger the alarm. This results in an alarm hierarchy. In

many cases there are no default settings for thresholds, so they may vary depending on

the monitoring system. [30] Systems have to be constructed following the international

standards IEC 60601-1-11 and IEC 80001. One of the biggest problems with current

available systems is the rate of false alarms, leading to alarm fatigue. To avoid missing

valid alarms, a large number of false alarms have to be accepted. Different studies show

that 72 % to 90 % of all alarms in a hospital environment are triggered unnecessarily,
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causing medical personnel to be exposed to an excessive number of alarms, which in turn

can lead to desensitization and missed alarms. [11]

Literature shows many approaches based on machine learning to reduce the number of

false alarms. Imhof et al. [31] provided a detailed summary of statistical approaches

and alarm algorithms which can be used for ICU patient monitoring. Ben Rejab et

al. [32] proposed a monitoring system based on Support Vector Machines reducing false

alarms. Chen et al. [33] used a Random Forest based approach to increase alarm accuracy.

Zang [34] applied artificial neural networks to generate patient individual clinical alarms,

achieving a sensitivity of 96 % and a specificity of 99 % by using eight hours of training

data.

In comparison to high risk units, vital signs are monitored in general wards mostly three

times a day and interpreted using a scoring system. However, there is no continuous

monitoring and therefore the deterioration of a patients health is detected with delay, in-

creasing the mortality rate. [12] For this reason, Weenk et al. [12] evaluated the feasability

of continuous monitoring of vital parameters with portable devices in the general ward.

They applied the ViSi Mobile and HealthPatch system and showed promising results

regarding the consistency of the measurements and the acceptance of the systems by the

patients. Cardona-Morrell et al. [35] reviewed multiple approaches for continuous mon-

itoring of vital signs in general wards and did not find any improved patient outcomes.

Kamio et al. [36] showed in a review of twelve studies that compared to traditional

methods, MLAs can improve prediction of clinical deterioration. Salem et al. [37] pro-

pose a framework for anomaly detection in medical wireless body area networks. They

show that their approach maintains a higher true positive and lower false negative rate

compared to similar frameworks.

2.1.4 Vital Signs Monitoring Outside Clinical Environments

Tracking of vital signs and fitness values becomes more and more popular in the general

population. It gives people the opportunity to track and improve their own health.

Even health insurers have now started to pay out rewards and benefits when fitness

trackers and other wearables have been able to prove the achievement of certain goals. [38]

This is also reffered by the term patient empowerment. Fitness trackers and wearables

allow recording of many different parameters ranging from the number of steps, covered

distance, calories burnt, sleep time or sleep quality to HR and BT. A good overview of

many available devices ordered according to their application range can be found in [39]

or [40].
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However, it only makes sense to use these recordings to improve personal health if the

measurements of the various parameters are accurate. Since the Cosinuss◦ One sensors

measures BT and HR, the following evaluations focus on these measurement types. El-

Amrawy and Nounou [41] compared multiple wearable devices able to measure HR with

a Onyx Vantage 9590 professional clinical pulse oximeter while performing a certain

number of steps on a treadmill. They found an accuracy of over 90 % for all tested

devices. In [42], Gilinov et al. tested various HR wearables at rest, light, moderate and

vigorous intensity. The accuracy of the tested HR monitors varied based on the type

of training. It is highest on the treadmill and lowest on the elliptical trainer. Ge et

al. [43] compared accuracy of chest and wrist warn HR monitors (electrocardiography

respectively photoplethysmography based measurements). While in normal conditions

the measurement types showed almost identical results, recordings during exercises could

deviate as much as 10 %. Overall, chest warn monitors appeared to be more accurate.

There are not many wearable devices and fitness trackers with the availability to measure

BT. To the best of the author’s knowledge, there has been no publication until the date

of this thesis’ publication about their accuracy.

2.1.4.1 Cosinuss◦ One Heart Rate Evaluation

Evaluation of the Cosinuss◦ One sensor HR measurement quality has been done by many

sport professionals. Schlichenmaier [44] compared its HR measurements with those of

a Garmin HR chestbelt during a 40 min endurance run. The superimposed similar

measurement curves can be found in Figure 2.2. The recorded graph of the Cosinuss◦

One sensor is more erratic because it consists of more measurement points and thus

the course of HR is presented more realistic. In contrast, the curve measured by the

Garmin HR chestbelt is smoothed. The mean HR measured by both devices is similar:

the Cosinuss◦ One sensor returned a HR mean of 154 bpm and the Garmin chestbelt 155

bpm. Similar findings are presented in [45] and [46], in the later during cycling.

To the best of the author’s knowledge, a comparison between Cosinuss◦ One BT measure-

ments and other measurement techniques to quantify its measurement quality has not

been published yet. Therefore, this is conducted as part of this thesis (see Section 5.1).

More about the Cosinuss◦ One sensor including its specification can be found in Sec-

tion 3.2.1.

For real-time analysis and interpretation of vital signs measured by the Cosinuss◦ One

sensor or other wearable devices, a system able of collecting, storing and analyzing the

data is needed. This thesis proposes a distributed system for this purpose. The theoret-

ical background of such a system type is introduced in the following section.
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Figure 2.2: Comparison of heart rate measurements between a Garmin heart rate
chestbelt (red) and the Cosinuss◦ One sensor (blue), following [44].

2.2 Distributed Systems

A distributed system is a system that consists of multiple components. Each individual

component is autonomous and located on different networked computers. They com-

municate with each other via messages so that actions can be coordinated to achieve a

common purpose. [47] The user of the system perceives the different components as a

single unit. In contrast, an individual component only has a limited incomplete view of

the system required to perform its subtask. [48]

There are two approaches to distributed systems: centralized and decentralized. A cen-

tralized approach is mostly organized using a client-server paradigm. The server pro-

vides centralized services and functionalities to multiple clients simultaniously. A client

can consume these services by sending a request and then waiting on the servers reply.

Therefore, the communication between a server and its clients is asymmetric. Centralized

client-server architectures can be built as multiple tiers where one server simultaneously

provides a service for clients and accesses another server as a client itself. A decentralized

approach is mostly established as peer-to-peer architecture. Participants in such a sys-

tem are equal. Communication between peers is symmetric and therefore peers can act

at the same time as server and client. In addition, there are hybrid distributed system

architectures which consist of centralized and decentralized parts. [49]

Connections for message exchange between the individual components depend on the

architectural concept and can be established in various ways. Since Bluetooth Low

Energy based Generic Attributes Profiles and web based Representational State Transfer
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are used for messaging in the developed proof-of-concept prototype, they are discussed

in the following sections.

2.2.1 Bluetooth Low Energy and Generic Attributes Profiles

Bluetooth is an industry standard (IEEE 802.15.1) for point-to-point communication

between devices at short distances using short-wavelength UHF radio waves in the ISM

band of 2.4 GHz. The full specification of Bluetooth can be found in [50].

As an extension of the Bluetooth standard, Bluetooth Low Energy (BLE) was published

for applications in the areas of mobile phones, wearables and the Internet of Things.

Compared to standard Bluetooth, BLE has been designed in such a way that significantly

cheaper and more energy-efficient connections are possible within the same reception

range. [51]

Message exchange between connected BLE devices is established using Generic Attributes

(GATT) Profiles. A profile is a hierarchical data structure, its composition can be seen in

Figure 2.3. Each profile consists of a use-case description, roles and general behaviors of

the GATT functionality. Profiles are composed of several services that are needed to fulfill

its use-case. To each service belong multiple characteristics. A characteristic consists of a

universally unique identifier based type, a value, properties about supported operations

and security permissions. It can also contain descriptor meta data and configuration

flags. With this framework it is possible to exchange all type of messages, including

discovery and connection establishement of BLE devices as well as reading, writing and

notification of a characteristics changed value. [52]

2.2.2 Representational State Transfer

Representational State Transfer (REST) is an architectural style for creating web ser-

vices to ensure interoperability over the Internet and was introduced by Fielding [53].

Its core elements are resources and representations. A resource is any storable type of

information (e.g. a document, an image, a collection of resources). They consist at

least of the information to be stored, an identifier and meta data (e.g. a source link or

alternates). Actions on resources are performed by REST components using representa-

tions. Representations (e.g. a HTML document or a JPEG image) show the current or

intended state of a resource and are used to transfer them between REST components.

They are composed of their data and describing meta data (e.g. the media type or the

last-modified time).
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Figure 2.3: Hierarchical data structure of a Bluetooth Low Energy Generic Attributes
profile, following [52].

A REST architecture consist of the following constraints, which define the properties of

a web service [53]:

• Client–server architecture: A component’s only concern should be its own

tasks. This supports portability and scalability and ensures that components can

evolve individually.

• Stateless: The server stores no context information of the client. The session

state is stored on the client. As a consequence, each request to the server has to

contain all necessary information so that the server can fulfill the requested task.

This ensures visibility, reliability, and scalability of web service architectures.

• Cache: Responses to requests have to be defined as cacheable or not-cacheable

to ensure that clients do not use outdated or inappropriate data for further re-

quests. This reduces unnecessary traffic and improves efficiency, scalability and

user-perceived performance. But, it can also reduce reliability.
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• Uniform interface: This is one of the most important constraints, since it sepa-

rates REST from other web service architectures. By applying the software design

principle of generality and therefore decoupling implementation and service, com-

ponents can evolve independently. This simplifies the architecture and increases

visibility of interactions. In the same time it decreases efficiency. An uniform

REST interface itself has four constraints:

– Resources in requests can be identified individually.

– Holding a representation of a resource including its meta data is enough in-

formation for manipulation of the resource.

– Messages are self-descriptive. They hold all the information needed for their

processing.

– Hypermedia should be used as the engine of the application state. This means

that a client does not need a hard-coded representation of the REST service.

It dynamically receives, based on former requests, all at the time available

and potentially need hyperlinks.

• Layered system: In a multi-layer system, a component can only see the com-

ponents with which it is communicating and not any components beyond. This

reduces the system’s complexity and promotes its independency. As a downside

it increases latency. Additionally, by using intermediate layers, components can

be split and therefore simplified. Moreover, the scalability of the system can be

increased and thus legacy services and clients encapsulated.

• Code-on-demand: Transfer and execution of scripts and applets can increase

a clients functionality for a short time. In other words, increasing a clients ex-

tensibility leads to reduced client complexity and thus increases interoperability

between clients and web services. This is the only optional constraint because it

can decrease visibility.

A web service application programming interface (API) following the REST architecture

is called a RESTful API. It consists of a base uniform resource locator, telling where

the web service can be reached, a media type that defines in which format a resource

is transferred (e.g. application/json, application/xml or text/html) and a standard Hy-

pertext Transfer Protocol (HTTP) method that makes a claim about the nature of the

request (e.g. creation, modification or deletion). [54]

However, a REST architecture with a RESTful API does not make any assumption on

how exchangeable data is structured. Communication standards are responsible for this

task. One of these standards for electronic health data is Health Level 7 Fast Healthcare

Interoperable Resources.
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2.2.3 Fast Healthcare Interoperable Resources

Fast Healthcare Interoperable Resources (FHIR) is a standard developed by Health Level 7

(HL7), describing data formats and elements for electronical exchange of healthcare infor-

mation. HL7 is a known standardization organization and has already published several

health care interoperability standards such as HL7 v2 , HL7 v3 containing a reference

information model and the clinical document architecture. Since digitization does not

stop at medicine either, methods for a structured and standardized exchange of health

data supporting discoverability, availability and understandability of personal electronic

health records are needed. The basic component in HL7 FHIR is a resource, describing

all exchangeable content. The main characteristic of a resource are a common way to

define them using a set of data types, a set of meta data and a human readable part. In

addition, HL7 FHIR follows the 80/20 % approach for its resources. This means that a

data field is only present when 80 % of the implementations will use it. The remaining 20

% can be added individually through so-called extensions. As format for data represen-

tation JavaScript Object Notation (JSON) or Extensible Markup Language (XML) can

be used. HL7 FHIR is not yet a normative standard, rather it is classified as a standard

for trial use (STU). [55]

HL7 FHIR is used in this project as the data format for message exchange between

the mobile phone application and the server component to transfer vital signs measured

by the wearable sensor. Once the data has been exchanged, it has to be analyzed and

interpreted. ML, which is presented in the following sections, is one possible way of doing

this.

2.3 Machine Learning

Machine learning (ML), a part of artificial intelligence, is a research field that is concerned

with how computers can acquire the ability to learn. MLAs learn by deriving a general

description of the task to be solved from a large amount of examples. These examples

are not only memorized by the algorithms, but they also try to derive general laws so

that unknown data can be assessed. In general, more difficult problems can be solved

if more training data is available. In comparison to manually programming algorithms,

this type of learning is often more efficient and cost effective. [56] ML can be divided in

four major categories [57]:

• Supervised learning: The examples used by an algorithm consist of the actual

input values and an additional label indicating the correct output of the examples.
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The algorithm is in search of a function which correctly maps the inputs to the

corresponding outputs.

• Unsupervised learning: No labels are known in advance. The algorithms try to

detect hidden patterns in the provided input data.

• Semi-supervised learning: A mixture between the two above, combing labeled

and unlabeled data for training.

• Reinforcement learning: An algorithm learns a strategy depending on the ex-

pected behavior. Each of his actions lead to a reward or a punishment. The

algorithm then tries to maximize the received reward.

Another important differentiation point between MLAs is the form of their output. If

the learned function of a MLA produces a discrete value, we talk about classification. If

the output is continuous, it is called regression. [58]

MLAs often have many parameters which can be tuned to receive the best classifica-

tion results. When tuning a MLA, not only the choice of the values of the individual

parameters is important, but also their interaction. A method used to find the optimal

parameters is called grid search. This is a search through a manually defined subset of the

parameter space, where the global optimum of parameter values and their combinations

is found by trying all possible pairs. [59]

Among the two biggest problems in training of MLAs are overfitting and the curse of

dimensionality. The term overfitting is used if a classifier can classify the training data

with high accuracy, but fails with similar unknown data. A generalized representation

of the training data could therefore not be derived. Curse of dimensionality means that

many algorithms work well in low dimensions but have problems finding a generalized

representation on high dimensional input data. The more dimensions the input data

consists of, the further apart are the samples and therefore more samples are needed for

accurate training. [56]

When dealing with time-series data, i.e. data that was recorded over a period of time

where the sequence plays an important role, there are according to Susto et al. [60]

two main approaches. One possibility is a data driven approach, where time-series are

compared directly on the basis of their raw data. Using this method, each individual

data point of a time-series represents one input dimension. Another statistically based

approach is to calculate features from time-series, which are then used to compare the

data. An advantage of the direct comparison is that no time-consuming feature extraction

has to be calculated. Likewise, no information from the original signal is lost. The second

method has advantages especially if time-series do not have the same length and if they
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have a variable number of missing data points. Whether one of the two methods or a

mixed version can be used often depends on the quality and length of time-series.

There are many applications of ML in many different fields. Of interest for this thesis

are unsupervised and semi-supervised classification algorithms developed for anomaly

detection, because the distribution between normal and abnormal vital sign time-series

of a subject is not uniform. In addition, abnormal data cannot be generated at the push

of a button and is therefore usually not available for training of the algorithms.

2.4 Anomaly Detection

An anomaly is according to Hawkins [61] “an observation which deviates so much from

the other observations as to arouse suspicions that it was generated by a different mech-

anism”. Therefore the detection of anomalies (synonimously called outlier detection,

novelty detection, deviation detection or exception mining [62]) in data science is the

identification of objects, events or observations that do not match expected patterns or

other objects in the data set [63].

There are many use-cases in which anomaly detection can be useful. Examples in-

clude fraud detection (e.g. in credit card transactions based on purchase behavior),

sport statistics (e.g. in various parameters which explain a players’ performance gain

or loose), measurement errors (e.g. in different types of sensors) or personal health and

medicine (e.g. unusual vital signs, symptoms or test results can be indicators of health

deterioration) [64].

An important aspect in anomaly detection is the nature of an anomaly. They are clas-

sified on the basis of their occurrence. Generally, three types of anomalies are distin-

guished, namely point anomalies, contextual anomalies and collective anomalies. Point

anomalies are the simplest type (see Figure 2.4a). They occur when a data point is

very different from all other data points. An example would be one BT measurement of

38 ◦C in a time-series of BT measurements between 36.5 ◦C and 37 ◦C. A contextual

anomaly is one that is considered abnormal due to the conditions of its environment. A

heart rate of 180 bpm can be normal during high intensity training and abnormal in a

desk working environment. If there exists a relationship between data points in a data

set and one relationship is different from all other relationships, then we talk about a

collective anomaly (see Figure 2.4b). An example of a collective anomaly is a change

in the RR-interval by a certain factor between two heart beats. [65] In this thesis all

three kinds of anomalies play an important role for anomaly detection in vital signs as

explained by the examples mentioned before.
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(a) (b)

Figure 2.4: Outlier examples: (a) point anomaly, (b) collective anomaly, follow-
ing [65].

Identification of anomalies is a non-trivial task. The following general factors from Chan-

dola et al. [66] have the biggest influence on successful anomaly detection in vital signs:

• The characterization of all normal values of a type of data recording is not al-

ways straightforward, especially for values at the threshold between normal and

abnormal data.

• The size of the delta, which decides whether a value change is regarded as an

anomaly, depends on the domain. In medicine, small changes can have already

a big impact on the patients health status, whereas small fluctuations in stock

markets are normal.

• Normal values and anomalies can change over time. Vital signs particularly depend

on a patients current state like age or fitness level.

• Recorded data is often noisy, making it difficult to distinguish between actual

anomalies and contaminated measurements. This is especially the case when the

difference between normal and abnormal values is small.

• One of the biggest challenges is the presence of accurate training and validation

data for fitting anomaly detection algorithms.

As the list shows, different types of anomalies have different degrees of detection severity.

The further down the list, the more difficult it is to solve the problem described.

Additionally, choosing the right algorithm that achieves the best results is difficult. It

depends on multiple factors including the size, quality and distribution of the data. In

many cases it cannot be said which algorithm will perform best before trying multiple

ones. [67] But, as principle guidance, there exist algorithm cheat sheets developed for
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example by Microsoft [67], SAS [68] or scikit-learn [69]. They are based on different

heuristics regarding the type of available data and the problem to be solved.

As already mentioned in the introduction chapter, two other challenges arise in medical

anomaly detection. First, vital signs, symptoms or test results of medical conditions can

be very different for each individual person. They can be influenced by the patient’s envi-

ronment or demographic factors and hence cannot be generalized. Therefore, algorithms

used for health anomaly detection have to be applied on data collected for each person

individually, taking into account their demographic factors, their normal activities and

their environmental context in order to classify PRPs correctly. Secondly, alarm fatigue

is a major issue regarding anomaly detection in health data. Therefore, the sensitivity

and specificity of anomaly detection algorithms has to be maximized to reduce the false

positive and false negative alarm rates respectively.

There exists three types of scenarios for detection of anomalies similar to the ML cate-

gories mentioned above. They influence the selection of possible algorithms [64]:

• Supervised scenario: Training sets with normal and abnormal data are available.

However, the distribution of classes is very unbalanced, mostly only a few instances

of abnormal data objects are present.

• Semi-supervised scenario: The training set consists of only one of the two

classes. Either data objects of the normal or the abnormal class are present.

• Unsupervised scenario: In many applications, there is no training data available

for which it is known whether the data is normal or abnormal.

The literature presents many methods and algorithms to identify anomalies in all of

the three scenarios. According to Kriegel et al. [64] they can be divided into two main

categories:

Statistical approaches:

• Methods based on statistical tests

• Depth based algorithms

• Deviation based methods

Model based approaches:

• Distance based algorithms

• Density based algorithms

Explanation of all possible algorithms would be out of scope for this thesis. For a good

overview the reader is therefore redirected to [64], [70] or [71]. The algorithms selected

in this thesis to identify anomalies are Local Outlier Factor, Isolation Forest, One-Class

Support Vector Machine and Autoencoders. They are introduced in the following sec-

tions.
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2.4.1 Local Outlier Factor

Local Outlier Factor (LOF) is a density based approach introduced by Breuning et

al. [72]. The idea of this approach is to compare the local density of a point with

the density of the point’s k nearest neighbors. The density calculation is based on

determining the maximum radius of a circle around an evaluated point needed to enclose

the k nearest neighbors. A point with a high density belongs to a cluster, a point with a

low density is considered an anomaly. Figure 2.5 illustrates this approach by evaluating

if point p belongs to cluster C. MinPts = 3 indicates the k nearest neighbors which

are considered for the density estimation. Since the density of p is a lot lower than

the density of its neighbors, the probability of an anomaly is high. The output of the

approach is not a binary decision, but rather a decision based on a factor computed by

the quotient between the average density of the closest neighbors and the density of the

evaluated point. A quotient close to 1 is considered as normal. With a higher quotient

increases the probability of an anomaly.

Figure 2.5: Basic idea of local density estimation used by the Local Outlier Factor
classifier, following [72].

2.4.2 Isolation Forest

An Isolation Forest is a distance based approach introduced by Liu et al. [73]. The

method relies on an assembly of Decision Trees. Decision Trees are hierarchically ordered

decision rules. They are displayed as a tree diagram to classify objects. [74] The basic

idea behind an Isolation Forest is to generate Decision Trees which isolate an instance

from the rest of other instances. Because anomalies are rare and different from normal

data, the chance of isolation is higher. The generation of such trees is based on recursive

data partitioning, selecting randomly a feature and then selecting randomly a split value

between the maximum and minimum value of the selected feature, until each instance

is isolated. As a consequence, paths to anomalies are way shorter since fewer instances

need fewer partitions until isolation and instances with more distinguishable values have
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a higher chance to be separated in early stages. This can be seen in Figure 2.6. In (a) a

point xi, identified as normal instance, needs twelve partitioning steps. In contrast, an

anomaly point x0 in (b) needs only four partitioning steps until isolation. Assembling

multiple isolation trees to a forest leads to converging path lengths for both normal

and abnormal data and therefore to consistent classifications. The algorithm returns an

anomaly score between 1 and 0 based on the average path length over all trees. A value

close to 1 has a shorter path length than the average path length and thus is an anomaly.

Values closer to 0 have a longer path length than the average path length and hence are

normal values. A value of 0.5 indicates that the path length of a value is close to the

average path length.

(a) (b)

Figure 2.6: Partitioning tree examples: (a) a tree of a normal data point xi, (b) a
tree of an abnormal data point x0, following [73].

2.4.3 One-Class Support Vector Machine

The One-Class Support Vector Machine (OC SVM) was introduced by Scholkopf et

al. [75]. The basics of this method is the supervised learning approach of normal SVMs.

SVMs are a classifier that try to map nonlinear separable data points from the input

space to a higher dimensional feature space using a kernel function. The goal of this

transformation is to make the data points linearly separable. The classification is based

on the search for a hyperplane which optimally separates different classes in the way that

the margin between the hyperplane and support vectors, crossing the data points closest

to the hyperplane, is maximized. [76] This can be seen in Figure 2.7.
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(a)

(b)

Figure 2.7: Support Vector Machine illustration: (a) a kernel function φ mapping
the input space to a higher dimensional feature space, (b) an optimal hyperplane which

maximizes the margin to the support vectors, following [77].

The OC SVM is an unsupervised extension to normal SVMs for anomaly detection. It

separates all data points from the origin of the feature space by searching a hyperplane

that maximizes the distance between the data points and the origin. An example is

shown in Figure 2.8. The resulting binary function will return +1 in a small area of the

feature space for normal data and −1 for the remaining unknown or anomalous data [78].

2.4.4 Autoencoder

Autoencoders were first proposed by Rumelhart [80] and Baldi and Hornik [81], pri-

marily as a data compression technique. In addtition to compression, they can also be

used for anomaly detection. Autoencoders are based on the supervised learning method

of artificial neural networks which are computational models inspired by its biological

counterparts [82].
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Figure 2.8: Illustration of a One-Class Support Vector Machine maximizing the dis-
tance between the hyperplane and the origin in the feature space, following [79].

2.4.4.1 Artificial Neural Networks

Artificial neural networks (ANN) have their fundaments in the research of McCulloch

and Pitts [83], and Hebb [84]. They introduce the term ANN and make a comparison of

there computational model to biologial neurons. The most basic ANN consists of a single

neuron as seen in Figure 2.9. The main components are the input vector x and the weights

vector w, which is multiplied and summed with the input vector. The transformation

function decides wether the neuron is firing or not by generating its output y as either

1 (firing) or 0 (not firing). [82] There are many transformation functions, the ones most

commonly used are the step-, linear-, sigmoid-, tanh- and the relu-function [85]. An

additional bias term b can be added to the activation function to shift the transformation

function. This simple ANN has very limited functionality and can only be used for simple

linear classification tasks.

For more complex tasks, feed-forward multi-layered ANNs (see Figure 2.10) are used.

They consist of three parts: an input-, an output- and multiple hidden layers. The input

layer has the same number of artificial neurons as the training object has dimensions. The

output layer consists of the same number of neurons as there can be different classification

results. The hidden layers transform the input in a way that a correct classification can

be derived. Their number depends on the classification problem to be solved. This setup

allows solving of many nonlinear classification problems. [82]

In order for ANNs to fulfill their classification task, they have to learn in a supervised

manner by examples. This learning is normally based on the gradient descent or the

backpropagation algorithm. These two algorithms adapt in every learning epoch the

weights vector w, trying to minimize a cost function by propagating the classification
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Figure 2.9: A single artificial neuron, following [82].

Figure 2.10: Architecture of a multilayer feed-forward artificial neural network, fol-
lowing [82].

error back through the network. The cost function calculates the error of a classification

made during training and therefore defines the magnitude in which the weights are

adjusted. A good overview of the different possible cost functions can be found in [86].

There are many different kinds of multi-layered ANNs, all developed for a specific appli-

cation field. An overview of the most used types of ANNs is given in [87]. The one most

interesting for this thesis are Autoencoders.

2.4.4.2 Autoencoders for Anomaly Detection

In comparison to other feed-forward multilayer ANNs, Autoencoders are an unsuper-

vised or semi-supervised ML approach. The goal of an Autoencoder is to learn the

representation of an input as a lossy compressed model, storing only the most important

information. A possible architecture can be seen in Figure 2.11. It consists of two major
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nonlinear mappings, an encoder and a decoder, with symmetrical design and multiple

layers. The encoder’s task is to find a function fΘ, mapping an input vector x to a

reduced form z, which is called latent space representation. In other words, z represents

the essential characteristics of an input object and thus the encoder performs an analysis

of the input data’s most important components. In contrast, it is the decoder’s task to

find a function gΘ, which maps the reduced form z into the reconstruction vector x̂ in

the original input space, with as few errors as possible. The difference between the orig-

inal input and the reconstructed output of the Autoencoder is called the reconstruction

error. Because anomalous data is different to the normal data used for training, it can

be expected that the reconstruction of anomalous data is more error prone. Therefore,

an unseen input is considered as an anomaly if the reconstruction error is greater than

the maximum reconstruction error of the training data. [88] By moving the threshold of

the maximum reconstruction error, the sensitivity and specificity of an Autoencoder can

be adapted in regard to its classification result.

Figure 2.11: Architecture of an Autoencoder, following [88].





Chapter 3

Methodology

This chapter describes the selected approach to achieve the goals of this thesis. Sec-

tion 3.1 lists chronologically the executed tasks to evaluate the Cosinuss◦ One sensor

and to implement the classification system as a proof-of-concept prototype. It explains

the decisions taken to fulfill the objectives and to asses the hypothesis. Then, Section 3.2

presents the specification of the Cosinuss◦ One sensor and the different materials, libraries

and tools used during the implementation phase of the proof-of-concept prototype.

3.1 Applied Approach

To asses the hypothesis from the first chapter, the objectives from Section 1.2 were di-

vided into individual work packages to conceptualize, implement and test the proposed

real-time classification system. Additional work packages were added to evaluate the

measurement quality of the selected Cosinuss◦ One sensor. Finally, the following chrono-

logically listed approach was chosen and realized:

(i) Development of an architectural concept for a real-time classification system and

planning of its realization in a proof-of-concept prototype.

(ii) Selection of a sensor for measurements of different vital signs.

(iii) Selection of a platform and programming language for the mobile phone application

and its implementation.

(iv) Selection of a programming language for the ML server and its implementation for

data storage.

(v) Recording of measurements for the evaluation of the Cosinuss◦ One senor.

27
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(vi) Evaluation of the Cosinuss◦ One sensor to show its suitability for real-time detection

of irregularities in BT and HR.

(vii) Selection of MLAs and their implementation as part of the ML server.

(viii) Planning of an experiment to evaluate the prototype including the performance of

the selected MLAs.

(ix) Deployment of the implemented proof-of-concept prototype on different hosting

platforms for different parts of the system.

(x) Execution of the experiment and evaluation of the recorded results.

The following sections explain these steps in more detail by describing how they were

carried out and why decisions were made.

3.1.1 System Development and Implementation

The developed architectural concept (i), its implementation in a proof-of-concept proto-

type and the differences between the concept and the actual implementation are described

in its own chapter. The description can be found in 4. Real-Time Classification System.

The sensor chosen for measuring vital sings (ii) is called Cosinuss◦ One. It was selected

because of its ability to measure BT and HR in one and the same device, its supposed to

be very accurate measurements, its open source API to collect data, its comfortable way

of wearing in the ear, its long battery life and its mid-tier price segment. Its specification

is listed in Section 3.2.1.

Android was chosen in step (iii) for the implementation of the mobile phone application

because it has the biggest market share of all smart phone operating systems (OS) [89]. In

addition, implementation of Android applications is simplified with the provided software

development kit (SDK) from Google in the Java programming language. Furthermore,

the available libraries and tools, especially for the development of RESTful API clients,

the amount of tutorials and the active community facilitate implementations of such

applications.

To implement the ML server (steps (iv) and (vii)), Python was selected as the preferred

programming language for the reason of its low complexity and versatility. With Python

it is possible to build easy to understand applications in every domain of computer

science. These Python applications stand out for their readability, changeability and

maintainability. Especially in ML, the ease of understanding and the application of

available supporting programs make fast prototyping possible. Additionally, the provided
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stack of open source libraries make it most interesting in data analysis and ML projects.

There are repositories for fast low-level mathematical calculations and data processing,

but also repositories consisting of high-level input-output mechanisms and ML libraries

with preimplemented MLAs.

Communication between the Cosinuss◦ One sensor and the Android application was

predefined by the sensors abilities and thus implemented using BLE. HL7 FHIR was

selected for the communication between the Android application and the ML server,

since it is an upcoming standard for interoperable medical data exchange. It would

enable the Android application to send the measured data not only to the ML server of

this thesis, but also to any HL7 FHIR enabled system (e.g. an electronic health record).

This means that the measured data could be used for any health related task in hospitals

or by a general practitioner.

3.1.2 Cosinuss◦ One Body Temperature Measurement Evaluation

Since evaluations of the Cosinuss◦ One sensor for HR already exist (see section 2.1.4.1),

focused this thesis on the evaluation of its BT measurements. In order to evaluate the

sensor’s quality, the BT measurements were assessed for general validity and compared

with measurements of a reference thermometer (steps (v) and (vi)). Due to available

resource constraints, it was not possible to make a comparison with another continuously

measuring in-ear thermometer. Therefore, measurement differences and inequalities had

to be accepted. However, the tendencies of both thermometers should be the same.

Measurements of the Cosinuss◦ One sensor were taken in five second intervals and labeled

in order to be able to track which activity led to which measurements (for available

labels see Section 3.1.4). These measurements were then compared to measurements of

a commercially available digital thermometer, as it can be bought in any pharmacy. The

measurements of the reference thermometer were taken manually in the armpit using a

two minute interval.

Comparison of the measurements was done on one subject (N = 1) in different settings.

First in a non-active environment to verify the general validity of the Cosinuss◦ One

measurements. Then, during sports on an elliptical trainer to evaluate the impact of

activity. Additionally, measurements were analyzed in different surroundings inside and

outside of buildings in order to determine the effect of the surrounding temperature on

the measurement quality. Due to a lack of resources a bigger sample size of users for the

evaluation was not possible. The same applies for the later evaluation of the MLAs.

The Cosinuss◦ One evaluation results can be found in Section 5.1.
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3.1.3 Selection and Implementation of Machine Learning Algorithms

The vital sign data in this thesis is self generated using the sensor and therefore the class

of normal vital sign measurements is known. For this reason, the applicable algorithms

originate from the field of unsupervised and semi-supervised anomaly detection scenarios.

The MLAs were selected in step (vii) according to a number of aspects so that they are

based on different concepts and mathematical approaches (for the differences between

the selected MLAs see Sections 2.4.1 - 2.4.4). This allows not only the compare the

algorithms themselves, but also to compare the algorithm types and therefore to decide

which one is best suited to classify PRPs. The MLAs that were chosen are:

• Local Outlier Factor

• Isolation Forest

• One-class Support Vector Machine

• Autoencoder

Because of the selected libraries, the first three algorithms build their architecture and

select the threshold for distinguishing between normal and anomalous data during train-

ing themselves. In contrast, the ANN architecture of the Autoencoder has to be built

manually before training and the threshold computed afterwords. The architecture of

the ANN consists of a three level encoder and decoder respectively. Its input and output

size were decided by the length of the vital sign time-series to be analyzed. Hidden

layers have a size counting 75 % and 50 % of the neurons from the input layer. The full

network can be seen in Table 3.1. The reconstruction error of the Autoencoder was used

to calculate the threshold differentiating between normal and anomalous data using the

metric mean absolute error. The selected threshold is the mean reconstruction error plus

1.5 times the standard deviation of the reconstruction error over all training data.

3.1.4 Prototype Test and Machine Learning Algorithms Evaluation

To be able to test the developed system, it had to be ensured that access to the proof-

of-concept prototype was possible from everywhere and not only in the development

environment. For this reason, the ML server was deployed (ix) to a Raspberry Pi exposed

to the Internet and the Android application installed on a Motorola G5S.

The final experiment to evaluate the system and the chosen MLAs (steps (viii) and (x))

with regard to their ability to classify PRPs correctly as normal or abnormal, was done

as a self-experiment (N = 1) using an approach consisting of two phases. In the first
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Table 3.1: Autoencoder model summery.

Layer Type # Units # Parameters

Input InputLayer 56 0

Encoder 1 Dense 42 2394

Encoder 2 Dense 28 1204

Decoder 1 Dense 28 812

Decoder 2 Dense 42 1218

Output OutputLayer 56 2408

Total parameters: 8036

phase for training data collection, BT and HR measurements were recorded continuously

for three consecutive days (72 hours), measuring these vital signs in five second inter-

vals, same as during the evaluation of the Cosinuss◦ One sensor. Measurements were

suspended when the sensor needed to be charged. During this data collection phase,

the measurements were labeled to be able to trace which activity led to which measure-

ments and to divide measurements into normal and abnormal data for training and test

purposes. The labels were chosen based on two categories, activity and location. The ac-

tivity labels were selected as basic activities on a high level as normal test data (left side)

and more special activities which are executed some time during a daily schedule, but

not very often, so that they could reflect artificial anomalies (right side). The available

activity labels are:

• Sleeping

• Lying

• Sitting

• Walking

• Sport

• Metro

• Eating

The label walking stands for both activities, standing and walking. The labels for the

location labeling were selected to additionally see the influence of the surroundings on

the sensor’s measurements (e.g. environment temperature and other influences on the

subject) and were only used for the evaluation of the Cosinuss◦ One sensor. Available

labels are:

• Inside

• Outside
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In the second phase, the selected MLAs had to be evaluated according to their perfor-

mance. Since generation of abnormal health data from a healthy person is not feasible or

predictable, the recorded normal data had to be split into training and test data. Data

labeled as sleeping, lying, sitting and walking, regardless of whether they were measured

inside or outside of a building, were considered as normal values and were therefore ex-

clusively used for training of the MLAs. Except the same amount of normal data as there

was abnormal data was randomly reserved for the test set and not used during training.

Data labeled as eating, metro and sport was considered as abnormal measurements and

only used in the test set.

Sport, metro and eating were selected as anomalous data, because they stand out from

the normal measurement types in three different degrees of difficulty. Sport should be

the easiest to identify. It can be assumed that sport will cause a major change in BT and

HR. Therefore, sport was selected as a label to show that the algorithms can identify

changes in PRPs. Metro and eating were selected as a bigger challenge for the algorithms,

because they should produce very similar measurements to other activity labels. Eating

is usually done during sitting, so these measurements should be similar. In the metro

a person is normally standing or walking, therefore measurements should be similar to

these labels when recorded inside a building. Visualizations for comparison of BT and

HR measurements for these labels can be found in Appendix A. In comparison to the

normal training data, only a fraction of measurements were taken of the anomaly labels

for testing purposes. The initial data collection phase led to 65944 measurements with

normal data and 2743 measurements for abnormal data (719 sport, 836 metro and 1170

eating). This results in a ratio of 1:25 for abnormal data and shows why sport, metro

and eating could be used as artificial anomalies. The test set of abnormal data was then

supplemented by the same number of normal data, previously held out from the training

set, to create test classes of equal size in order to not distort the classification result of

the MLAs.

After recording, the continuous vital sign measurements were split into individual chunks

according to the selected analysis time of two minutes, using an overlap of 30 seconds

between two time-series. This period is long enough to recognize short-term changes in

vital signs. Shorter time-series do not allow the recognition of significant changes. When

longer time-series are used, events that have led to changes in vital signs are less visible

because the surrounding readings obscure them. Using an overlap between the generated

time-series ensures that significant changes at the border between two consecutive time-

series could be recognized too.

Next, the MLAs were trained using a data-driven approach. Grid search was applied for

a manually selected set of parameter combinations in order to find the best one for each
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classifier. The use of this type of parameter tuning ensures that the best possible result

is achieved for each MLA.

Then, performance evaluation of the MLAs was done in an overall setting and for each

type of abnormal data individually. A confusion matrix was used to calculate the accu-

racy, sensitivity and specificity of each MLA. In contrast to normal confusion matrices,

where normal data has the label 0 and special data the label 1, it is here the other way

around. Normal vital sign time-series have the label +1. Anomalies or abnormal vital

sign time-series have the label −1. Therefore, a confusion matrix consist of the following

cells:

• True positive: An abnormal vital sign time-series is correctly identified as an

anomaly.

• True negative: A normal vital sign time-series is correctly discarded as no

anomaly.

• False positive: A normal vital sign time-series is incorrectly identified as an

anomaly.

• False negative: An abnormal vital sign time-series is incorrectly discarded as no

anomaly.

An example of a confusion matrix using these cells can be seen in Table 3.2. Considering

these definitions, sensitivity measures the percentage of time-series measurements who

are correctly identified as being anomalies (i.e. the ratio of true positives divided by

the sum of true positives and false negatives). Specificity measures the percentage of

time-series measurements who are correctly identified as not being anomalies (i.e. the

ratio of true negatives divided by the sum of true negatives and false positives).

Additionally, in case of the Autoencoder, the reconstruction error was calculated to show

the difference between the error of normal and abnormal data. Moreover, it shows the

influence of the selected threshold to divide the measurements into normal and abnormal

recordings and thus the effect of the threshold on sensitivity and specificity.

The MLA evaluation results can be found in Section 5.2.

3.2 Development Materials, Libraries and Tools

The development of the proof-of-concept prototype and the computation of the MLAs

during the training phase was done on an Apple MacBook Pro 2014 running OS X
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Table 3.2: Example of a confusion matrix for vital sign time-series anomaly detection.

Predicted
Class

−1 / Abnormal
Measurements

+1 / Normal
Measurements

Actual
Class

−1 / Abnormal
Measurements

True
Positives

False
Positives

+1 / Normal
Measurements

False
Negatives

True
Negatives

High Sierra version 10.13.5 with a 2.6 GHz Intel Core i5 CPU, 8 GB 1600 MHz DDR3

RAM and a 256 GB SSD. For data generation and testing of the above described ex-

periment, the ML server was deployed on a Raspberry Pi Model 3B v1.2 running Linux

Debian derivative Raspbian 9 Stretch version 4.9.80-v7+ 32Bit with a 1.2GHz Broadcom

BCM2837 CPU, 1GB LPDDR2-900 SDRAM and a 16 GB microSD. The mobile phone

as host for the Android application was a Motorola G5S running Android Nougat version

7.1.1 with a 1.4 GHz Snapdragon 430 Octa-core 1.4 GHz Cortex-A53 CPU, 3 GB LP

DDR3 RAM and 32 GB internal storage.

3.2.1 Cosinuss◦ One Sensor

The Cosinuss◦ One is the sensor of choice for measuring vital signs. According to its

website it is “a professional fitness tracker monitoring multiple vital signs with stunning

accuracy” [90]. Unlike other fitness sensors worn on the wrist or chest, the Cosinuss◦

One measures the vital signs in-ear. The manufacturer promises that this would be

more comfortable due to an ergonomic design, the skin-friendly material and the ease

of handling. The sensor should offer its wearer more freedom of movement compared to

other fitness trackers.

The sensor has the ability to measure HR, HR variability and BT. These measurements

are based on the company’s proprietary technology called earconnect. HR and HR

variability is measured optically using the circummission-method. BT is determined

by means of a resistance sensor. The specification of the BT and the HR sensor can

be found in Table 3.3. The vital signs are then calculated with intelligent algorithms,

digitized and wirelessly forwarded to a connected device. The size of the sensor is four

by four centimeters and it weighs six grams. It is therefore the smallest and lightest

HR monitor commercially available. Its battery should last up to eight hours under

real-world conditions and recharge in one hour. The manufacturer’s recommended price
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Table 3.3: Cosinuss◦ One body temperature and heart rate sensor specification, fol-
lowing [91].

Property Value

Heart
Rate

Sensor type Pt1000

Measurement method Resistance temperature detector

Measurement accuracy ±0.1 ◦C

Measuring range 0 - 50 ◦C

Body
Temperature

Sensor type Optical sensor

Measurement method Circummission-method

Measurement accuracy ± 1 beats per minute (bpm)

LED spectrum Green

for the Cosinuss◦ One sensor is 119 e. The full specification of the sensor can be found

in [91].

The Cosinuss◦ One sensor can be used together with all devices supporting connections

via BLE and Ant+. The measurements can be displayed using the companion application

available for iOS and Android. Unfortunately the HR variability is only measured so

far but not implemented on the companion apps. Due to the fact that the Cosinuss◦

One sensor uses open source Bluetooth GATT profiles as messaging standard, it is also

possible to write own applications for reading measured data.

3.2.2 Android Development

The development of the Android application was done using Java version 1.8.0_161 and

Android SDK version 26. The preferred integrated development environment (IDE) was

Android Studio version 3. Other main libraries used include HAPI-FHIR and Retrofit.

HAPI-FHIR [92] is a library providing an open source implementation of the HL7 FHIR

specification in Java. It allows among other things the processes of creating, editing and

transforming HL7 FHIR resources between different formats on client devices such as

Android applications. The library version used in this thesis was 3.2.0 for HL7 FHIR

version Standard for Trial Use 3 (STU3).

The library Retrofit [93] is an open source type-safe HTTP client for Java, especially for

Android application development, which makes it comparatively convenient to exchange
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structured data such as JSON formats with a web service providing a RESTful API. The

version used was 2.4.0.

3.2.3 Server Development

To develop the ML Server, the Python programming language version 3.6.4 was used. Py-

Charm in the Community Version 2017.3 was the preferred IDE. Other applied libraries

include Django and its extension Django-REST-Framework, Smart-on-FHIR Python

client, scikit-learn, Keras and Tensorflow as well as Numpy, Pandas and Matplotlib.

All of these libraries are open source.

3.2.3.1 RESTful API

To develop the REST architecture of the ML server, the library Django [94] version 2.0.5

and its extension Django-REST-Framework [95] version 3.8.2 were used. Django is a high-

level Python web framework for fast, secure and scalable development of web services

with a clean and pragmatic design. Adding the extension Django-REST-Framework

makes it even more easy to build RESTful APIs based on Django.

The Smart-on-FHIR Python client [96] is another open source implementation of the

HL7 FHIR specification developed for the Python programming language. It can be

applied for client queries to HL7 FHIR servers and to process FHIR resources, similar

to the abilities of the HAPI FHIR library for Android. The library version used in this

thesis is 3.2.0 for HL7 FHIR version STU3.

3.2.3.2 Machine Learning

For the development of the server’s ML part, several libraries have been exploited. Func-

tionality from Numpy [97] version 1.14.3 and Pandas [98] version 0.22.0 was applied

for pre- and postprocessing of the time-series data (see Section 4.2.2). Numpy is one

of the most essential libraries for scientific computing in Python providing low-level

functionality based on multidimensional arrays and functions to perform fast operations

and calculations on these arrays. Pandas is very similar to Numpy in the way that it

also provides high performance computing data structures and tools for data analysis.

Compared to Numpy, Pandas however provides more high-level functionality, which is

especially advantageous when processing time-series and labeled data from relational

databases.
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All the selected MLAs, except the Autoencoder, were developed using the scikit-learn [99]

library version 0.19.1. This library is one of the most popular for ML in Python. It

provides easy to use functionality for data mining and data analysis. The functionality

ranges from classification, regression, clustering, dimensionality reduction and model

selection to pre- and postprocessing of data and evaluation of algorithms. The provided

MLAs are already preimplemented and therefore easy to use by setting an algorithm’s

parameters and providing the input. Evaluation of the algorithms is done by applying

preimplemented performance metrics.

For the developement of the Autoencoder, the high-level library Keras [100] version 2.2.0

was used. It provides a flexible API for fast development and experimentation of all

kinds of neural networks. It runs on a more low-level neural network library, also called

backend in the Keras language, facilitating the functionality provided by the backend.

Keras can run on top of many different backends. The one chosen for the proof-of-concept

prototype implementation is Tensorflow [101] version 1.5.0. Tensorflow is a library for

high-performance computations on dataflow graphs for different tasks and often used

for neural network implementations. For the development of the Autoencoder on the

MacBook Pro, the standard 64 Bit library of Tensorflow could be used. For deployment

of the proof-of-concept prototype on the Raspberry Pi, the library had to be recompiled

into a 32 Bit version, since the Raspbian OS is 32 Bit based and a 32 Bit Tensorflow

version is not provided yet by its development team.

The generation of many figures presented in the results and discussion chapters was done

utilizing the library Matplotlib [102] version 2.2.2. Matplotlib is a Python plotting tool

that allows to create high quality figures (e.g. plots, bar charts, histograms, scatterplots

or errorcharts).





Chapter 4

Real-Time Classification System

This chapter describes first in Section 4.1 an architectural concept for a real-time clas-

sification system of vital sign time-series data. Section 4.2 is then concerned with the

realized proof-of-concept prototype and its differences to the architectural concept. It

presents the implementation of the different components including an Android applica-

tion and a Python Django server, and discusses the used communication protocols.

4.1 Architectural Concept

The overall architectural concept of the real-time classification system is designed as a

distributed system using a multitier client-server architecture. It consists of a wearable

sensor, a mobile application and a ML server. A visualization of this architecture can be

seen in Figure 4.1. The wearable sensor is used for continuous measurement of different

vital signs. The recorded data is then sent to the mobile application using a wireless

communication protocol, if supported. The mobile application (client) is responsible for

the initiation of the connection to the sensor (server) and the subscription to the com-

munication service. In turn, the sensor will send the requested vital sign measurements

either in a predefined interval or as part of a notification service if the measured vital

sign values change.

In addition, the mobile application is used to display the received vital sign measurements

from the sensor and to relay them to the ML server for training purposes. The ML

server is in charge of many different mobile applications, which represent the clients. Its

responsibility is to store the received training data and to carry out the training of all

available MLAs. The training should be done in regular intervals to make sure that new

received training data (since the last training phase) can be incorporated as well. Using

39
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Figure 4.1: Overall architectural concept of a real-time vital sign classification system.

this approach, continuous learning and therefore continuous improvement of a classifiers

robustness can be satisfied. This is done on the server side since saving the training data

and conducting the training needs a lot of computational resources, especially if grid

search is used for parameter tuning of an algorithm.

Storage of the training data and training of the MLAs is done in a person-related fashion,

resulting in trained models for each individual subject using the real-time classification

system. The mobile application can pull the trained model of each algorithm from

the server after training. Afterwards, new received sensor data, which is unknown to

the trained classifiers, can be applied to the trained models in order to detect possible

anomalies. This can be done directly on the mobile device since computational resources

for prediction are way smaller compared to the ones needed during the training process.

An advantage of executing the classification by the MLAs directly on the mobile device

is that the dependency on an Internet connection is no longer given. This eliminates

one of the biggest sources for errors, since, after the collection of the training data, the

system can be used in places without present Internet connection like in elevators or

remote regions.

Moreover, if a measurement should be classified as an anomaly by one of the MLAs, the

user needs to have the ability to provide feedback by confirming whether the anomaly

classification was correct or false positive. In the case of an incorrect classification, i.e.
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Figure 4.2: System architecture implemented in the proof-of-concept prototype.

the time-series is not an anomaly, the measurements that have led to the false positive

evaluation of the algorithm are sent to the server as new training data. As a result,

new measurements, which are similar to the ones wrongly classified as anomaly, will in

the future no longer be classified as false positive. If no Internet connection is available

during a false positive classification, the new training data should be stored temporarily

until a new connection can be established.

This architectural concept has as consequence that the system has to be used in two

phases. First, the user has to generate training data (72 hours are suggested to generate

a sufficient baseline of a daily routine’s normal measurements, if a five second interval

is selected, see Section 3.1.4) before the user can use it for actual classifications of their

vital signs.

4.2 Proof-of-Concept Prototype

For simplicity reasons, the implementation of the proof-of-concept prototype differs in

some aspects from the intended architectural concept introduced in the previous section.

The changes can be seen in Figure 4.2.

The first difference between the figures is that the different components of the system

are now accurately specified. The sensor is the Cosinuss◦ One, measuring the vital signs
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BT and HR, the mobile application is defined as an Android application displaying the

measurements of the sensor and the ML server is a Python Django server used for the

ML tasks.

Another difference is that the execution of the MLAs for classification of the vital sign

time-series is done on the server side, like the training of the algorithms, and not as

intended directly on the mobile application. The rational behind this decision is that

porting the trained algorithms from the server to the client side during implementation

would have added another complexity layer to this thesis and therefore would have taken

too much time. That is why the mobile application in the proof-of-concept prototype

sends the measured data for classification purposes to the server and requests a classi-

fication in the same interval. The server then classifies the last received measurements

and returns the classification result to the client, where it will be displayed.

The last difference is concerned with the user feedback. It was not implemented because

of time reasons and because it has no influence on the performance evaluation of the

algorithms. As a result, false positive classifications for the same measurements will also

occur for future measurements in the prototype.

The client-server communication between the Android application and the Cosinuss◦

One sensor is based on BLE GATT services and characteristics. The ones used are:

• The Health Thermometer Service1 storing the data to be transmitted in the Tem-

perature Measurement Characteristic2.

• The Heart Rate Service3 storing the data to be transmitted in the Heart Rate

Measurement Characteristic4 .

• The Battery Service5 storing the data to be transmitted in the Battery Level

Characteristic6.

1https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.s
ervice.health_thermometer.xml, accessed on 09.07.2018

2https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.c
haracteristic.temperature_measurement.xml, accessed on 09.07.2018

3https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.s
ervice.heart_rate.xml, accessed on 09.07.2018

4https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.c
haracteristic.heart_rate_measurement.xml, accessed on 09.07.2018

5https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.s
ervice.battery_service.xml, accessed on 09.07.2018

6https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.c
haracteristic.battery_level.xml, accessed on 09.07.2018
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The client-server communication between the Android application and the Python Django

server is based on a RESTful API. The messages are sent using the HL7 FHIR Obser-

vation7 resource. Examples in JSON encoding for sending labeled BT and unlabeled

HR measurements from the client to the server as well as for the communication of

the classification result back from the server to the client can be seen in Appendix B,

Listings B.1, B.2 and B.3 respectively.

4.2.1 Android Application

The Android application represents the bridge between the Cosinuss◦ One sensor and

the Python Django server. It is the tool to be used by the user for interaction with

the vital sign classification system. The application provides its functionality through

four main views, the initialization-, settings-, connection- and main view. In addition, a

fifth view shows an about page with information about the application and why it was

implemented. Figure 4.3 displays an activity diagram, graphically showing the activities

to be performed by the application and the flow between the different views. Screenshots

of the views can be found in Appendix C, Figures C.1 - C.8.

The initialization view is shown when the application is started for the first time. It

is used to initialize several settings needed for usage of the application. This includes

the generation of the patient identification based on the phones current milliseconds, to

ensure that the identification is random, and if the measurements should be sent to the

ML server. If so, the user has additionally to provide the Internet address of the ML

server, the transmission interval of the measurements and if the measurements should

be sent for training or classification purposes. Afterwards, if the Android application

is used for a second time, this view will no longer be displayed. Instead, these settings

can be changed in the settings view. Moreover, the settings view enables the selection

of the MLA that should be used for classification of the vital sign time-series. Available

algorithms are the ones mentioned in Section 3.1.3.

The view visible after normal start-up of the Android application, i.e. not for the first

time, is the main view. Because there exists no connection yet to the Cosinuss◦ One sen-

sor, there will nothing be visible except a please connect to the sensor message. Therefore,

the connection view has to be started using the menu. This view shows nothing except

a spinning wheel, but in the background the BLE connection to the sensor is being es-

tablished. After the connection has been initialized, the user is redirected back to the

main view.

7https://www.hl7.org/fhir/observation.html, accessed on 09.07.2018
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Figure 4.3: Activity diagram of the Android application.
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Next, the user has to press the start-reading button. This initializes the subscription for

the Reading Changed Notification Service of the Cosinuss◦ One sensor. It means that the

sensor will send a message containing the BT or HR readings only if the measured values

have changed. If such a message is received, the BT and HR display will be changed

according to the new measurements. Additionally, the received measurements will be

stored for later use, when sending them to the ML server.

The remaining part of the main view depends on the previously set settings. If sending of

the BT and HR measurements to the ML server is activated, a background server service

for sending the measured vital signs to the ML server will be started after connection

setup to the sensor has finished. This service fetches the BT and HR values previously

stored, uses a factory design pattern to build the HL7 FHIR Observation resources and

sends them to the ML server using its RESTful API. This process is regularly triggered

according to the transmission interval defined in the (initial-) settings. Additionally, if the

data is sent as training data, two dropdown fields are shown in the main view to label the

data. The selected labels are then added to the HL7 FHIR Observation resources during

their creation as part of the interpretation data field. This is needed for the evaluation

of the Cosinuss◦ One sensor and the MLAs as explained in Sections 3.1.2 and 3.1.4, and

could be removed for productive use of the system. In contrast, if the classification option

is enabled in the settings menu, the server service will send a classification request to

the server in addition to the unlabeled HL7 FHIR Observation resources. This request

is sent in the same interval as the vital sign measurements are being sent. The result

of this request is another HL7 FHIR Observation resource containing the classification

result in its interpretation data field. The result will then be extracted and displayed.

Pressing the stop-reading button in the main view resets the application for future use. It

terminates the BLE connection to the Cosinuss◦ One sensor and stops the server service

for sending the vital sign measurements and classification requests to the ML server.

4.2.2 Machine Learning Server

The Python Django server is the heart piece for the ML activities of the developed

proof-of-concept prototype. It follows a web-based REST architecture, consisting of four

major parts including a RESTful API, a storage service and two ML components as

the training- and the classification service. The individual components are described in

depth in the following paragraphs. A visualization of the architecture can be seen in

Figure 4.4.
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The RESTful API exposes a client’s access points to the different services offered by the

ML server using a facade design pattern. There are three different kinds of access paths,

each corresponding to a different requestable service:

• /store/observation/labeled: HTTP POST request containing a HL7 FHIR Ob-

servation resource including the measured vital sign to be stored for training pur-

poses in comma-separated value (CSV) formatted files.

• /store/observation/unlabeled: HTTP POST request containing a HL7 FHIR

Observation resource including the measured vital sign to be stored for classification

purposes in a SQL database.

• /classify/<mla-type>/<patient-id>: HTTP GET request to classify the last

received measurements based on the provided MLA type <mla-type> and the pro-

vided patient identification <patient-id> by the client. Abbreviations for the MLA

types <mla-type> which are supported by the system are:

– if for the Isolation Forest algorithm

– lof for the LOF algorithm

– ocsvm for the OC SVM algorithm

– ae for the Autoencoder ANN algorithm

The storage service receives from the RESTful API the HL7 FHIR Observation resource

sent from the client. In a first step, the FHIR processing unit extracts the type of

vital sign observation and the corresponding relevant information from the received HL7

FHIR Observation resource (i.e. type BT or HR and the associated patient identification,

measurement timestamp, measurement value and unit, and for labeled data activity- and

location information). If the data is marked as training data (i.e. it is received over the

labeled path), it is transformed into CSV form by the CSV mapping unit and stored for

each patient individually in a file based on the measurement type. This storage separation

of BT and HR measurements is done because BT and HR measurements are received in

different POST requests. Each request can only hold one type of measurement. This also

applies for the later explained SQL storage of unlabeled data for classification purposes.

Moreover, this unit creates for each measurement series a new CSV file to not have

abrupt changes between single measurements (e.g. if one measurement series stops after

doing sports and the next starts sitting before the television). A new measurement series

is started if the last received measurement was more than five minutes ago. Five minutes

were selected as threshold because the sensor sometimes does not send any information

for a short time. This can be the case, for example, if the connection was interrupted in

the elevator although the measurement series was not terminated.
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Figure 4.4: Server architecture implemented in the proof-of-concept prototype.
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In contrast, if the data is sent for classification purposes (i.e. it is received over the

unlabeled path), it is transformed by the object-relational mapping (ORM) unit into

relational form to match the expected format of the SQL database. Similar to the CSV

storage, there exist two different tables, one for BT and another for HR data. They store

the same relevant information of the resources as the CSV storage, just without a label.

Note that a single measurement is only stored if its value is above a threshold of 30 ◦C

for BT and 50 bpm for HR. This reflects a plausibility assessment by filtering data which

is not feasible (e.g. due to measurement errors of the sensor).

This type of storage for measured data based on two databases is done to have as few

differences as possible between the proposed architectural concept and the implemented

proof-of-concept prototype. It allows to have a clear distinction between training and

not-training data. It reflects the proposed architectural concept, where there would be

no classification data on the server after finishing the training data collection phase. The

use of CSV based storage for the training data simplifies its later processing, because the

Python libraries used for the ML part have special input functions which can process CSV

files very efficiently. Similarly, using a relational database as storage for the classification

data facilitates the efficient loading and generation of a single time-series based on the

last generated measurements.

The training service is scheduled regularly for each patient on a fixed time depending on

the server settings. For the proof-of-concept prototype it was decided that the training

of the MLAs should always be executed daily at midnight. This is reflected in Figure 4.4

by the clock in the right upper corner. First, the load data unit fetches all the CSV files

containing the BT and HR measurements of one patient and loads their measurement

values. Then, the data processing unit is responsible for the preparation of the measure-

ments for actual training and the generation of the vital sing time-series. Therefore, this

unit merges the BT and HR measurements based on their timestamps, applies a gaus-

sian smoothing to reduce single deflection measurements and normalizes the BT and HR

measurements into the same interval. This is followed by the generation of time-series

chunks for training of the different classifiers. The last step of the training preparation

is to supplement the time-series with the mean and standard deviation of the individual

BT and HR series, and the hour and minute of the recording time (middle of the time-

series). This represents a data-driven approach for the analysis of the time-series which

is supplemented by four statistical features. Therefore, the MLA input space consist of

56 dimensions (25 values of BT and HR measurements respectively plus four statistical

features). Finally, the actual training of the four MLAs is executed in the ML training

unit, using the grid search method for parameter tuning, before the store ML model unit

safes each model according to the patient identification and the best parameters.
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The classification service is triggered by the request of the mobile application. First, the

load data unit fetches the last recorded BT and HR measurements based on the provided

patient identification in the request path. The number of loaded measurements depends

on the chosen length of a time-series in the training phase (25 values for each vital sign

type in the implemented prototype). After that, the data processing unit executes the

same data processing steps as in the training service component. The only difference

is that just one time-series of the last recorded measurements is created. At the same

time, the load ML model unit fetches the trained ML model from storage, according

to the specified patient identification in the request path. This allows the anomaly

classification unit to analyze the last generated time-series and to classify it as either

normal or abnormal. Finally, the classification result is added to a newly generated HL7

FHIR Observation resource by the FHIR processing unit and returned to the client.





Chapter 5

Results

This chapter reports the results obtained after executing steps (vi) and (x) listed in

Section 3.1. It first presents in Section 5.1 the evaluation of the Cosinuss◦ One BT

measurements by showing its measurements in different surroundings and by comparing

them to a commercially available digital thermometer. After that, the classification

results of the different applied MLAs are shown in Section 5.2, using a confusion matrix

to derive for each algorithm overall accuracy, sensitivity and specificity. In addition, the

classification results for each type of abnormal data are displayed separately.

5.1 Cosinuss◦ One Body Temperature Measurements Eval-

uation

In order to evaluate the BT measurement quality of the Cosinuss◦ One sensor, its mea-

surements were first verified for their general validity according to the normal range

of human BT. Afterwards, the recordings were compared with those of a commercially

available digital thermometer as it can be bought in every pharmacy. The aim of this

comparison was to examine whether changes in BT could be recorded in the same ratio

during a non-active and active state. Since the evaluation of the Cosinuss◦ One sensor

was conducted by only one subject (N = 1), the following results must be treated with

caution. They are visualized in Figures 5.1 and A.2.

5.1.1 General Validity of Measurements

Figure 5.1a shows an example in which the Cosinuss◦ One sensor needed approximately

four to six minutes, depending on its environment, until it was fully initialized and mea-

sured BT in a normal range. After initialization, the measurements stabilized with slight
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fluctuations (around 36 ◦C in this example), provided that the subject was surrounded

by not rapidly changing conditions. This type of initialization could be observed every

time the sensor was turned on. However, the reached steady level varied depending on

the environment.

The influence of the surroundings on the measurements of the Cosinuss◦ One sensor can

be seen in two further examples. Figure 5.1b displays approximately 45 minutes of mea-

surements. The first third (∼15 minutes) was taken outside a building at 8 ◦C outside

temperature, showing a BT fluctuating between 30.4 ◦C and 31.1 ◦C. The remaining

measurements (∼30 minutes) were then taken inside a building. It can be observed that

after the subject entered the building, the BT rose rapidly until 34.2 ◦C. Later, the curve

became more shallow and the BT increased more slowly but still continuously until the

end of the measurement series, where the Cosinuss◦ One sensor showed a BT of 35.0 ◦C.

Surprisingly, this slow increase in BT could be observed during many measurements in

controlled and constant environments like inside a building.

Furthermore, outside measurements were always quite inaccurate and the measured BT

was strongly dependent on the surrounding temperature and weather (i.e. how warm or

cold it was and whether it was raining, cloudy, windy or sunny). However, BT below

30 ◦C was never measured. The dependency of the measurement accuracy on ambient

environmental factors can be seen in Figure 5.1c. It shows approximately 52 minutes of

measurements on a sunny day during an outside temperature of 18 ◦C. The first quarter

was measured inside a building, to create a steady baseline, recording a temperature of

36.2 ◦C with little fluctuations around this point. After the subject left the building and

was standing in the shadow, the BT constantly dropped to 34.8 ◦C. Then, the BT rose

sharply again to 36.0 ◦C when the subject changed his location, sitting in the sun for

the following five minutes. After leaving the sun, the same sequence as before could be

observed. At first, after the subject entered the shade for the second time, the measured

BT fell even more to 34.6 ◦C, only to start rising again when it returned to the building.

Remarkable is that the decrease in the shadow has the same tendency and velocity both

times.

Dependencies to ambient environmental temperature could also be determined within a

building. The measurements of the Cosinuss◦ One sensor were influenced by whether

heating or air conditioning was turned on or whether a window was opened. Measure-

ments at the same time and place, but on two different days with different indoor factors,

could show differences of up to 1.5 ◦C.
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(a)

(b)

(c)

Figure 5.1: Body temperature measurements made by the Cosinuss◦ One sensor:
(a) initialization time of the sensor, (b) comparison between measurements inside and

outside of a building, (c) influence of the weather on measurement accuracy.
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5.1.2 Comparison with a Digital Thermometer

The first comparison of the Cosinuss◦ One sensor with the digital thermometer was done

in a non-changing environment, sitting on a chair inside a building for approximately 30

minutes. The measurements are visualized in Figure 5.2a. The Cosinuss◦ One sensor

measured an average value of 36.8 ◦C and fluctuated by 0.3 ◦C from 36.6 ◦C to 36.9 ◦C.

In comparison, the digital thermometer showed a constant value of 36.3 ◦C, which is

0.5 ◦C degrees lower than the average measurement of the Cosinuss◦ One sensor. Both

values are in the normal range of human BT, having the same tendency. The differences

of 0.5 ◦C could be explained by the different measurement techniques at different body

positions.

Figure 5.2b shows a second comparison during approximately 50 minutes, 30 of them

the subject was in an active state on an elliptical trainer. In contrast to the previous

comparison, the Cosinuss◦ One measurements were lower than those of the digital ther-

mometer. It can be observed that the measurements did not coincide, not even in their

tendency. The digital thermometer recordings increased by 0.6 ◦C after the workout

started, then stabilized as the subject began to sweat and fell back to their initial values

after completion of the workout. In comparison, the BT measurements of the Cosinuss◦

One sensor decreased in the first part of the workout by 0.4 ◦C. Then, the measured

BT increased during the second part until the initial values were reached, only to drop

again significantly for 0.8 ◦C after the workout finished. While the measurements of the

digital thermometer are described in similar ways as in literature, the measurements of

the Cosinuss◦ One sensor are rather astonishing and could be explained by sweat devel-

opment. A more in depth interpretation for reasons of the disparity between the two

sensors can be found in Section 6.1.

5.2 Machine Learning Algorithms Evaluation

The results of the experiment to analyze the four MLAs are presented in two parts. The

first part reports an overall evaluation of the algorithms, using all three types of anomaly

data together as test set. Then, the results for each type of anomaly data are presented

separately. As with the Cosinuss◦ One sensor, this evaluation was performed on data

collected by only one subject (N = 1). Therefore, these results must be treated with

caution as well.
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(a)

(b)

Figure 5.2: Comparison of body temperature measurements between the Cosinuss◦
One sensor and a commercially available digital thermometer: (a) without activity

while sitting on a chair, (b) during sports on an elliptical trainer.

5.2.1 Overall Results

The overall evaluation results of the different MLAs applied to the vital sign time-series

measured by the Cosinuss◦ One sensor can be seen in Table 5.1. All algorithms reached

an accuracy higher than 80 %. The best result was obtained by the OC SVM with

just under 90 %. The LOF and the Isolation Forest follow with almost similar results,

being just 1 % respectively 2 % less accurate. The Autoencoder achieved the worst

overall classification results with 82 % and therefore almost 8 % less accuracy. If only

sensitivity is considered, which shows if all anomalies are detected, the Isolation Forest

achieved the best result with just over 90 %. The OC SVM and the LOF were almost

equally good. The Autocoder once more achieved the worst result with 76 % sensitivity.
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Table 5.1: Overall classification results of the different selected machine learning
algorithms.

Local
Outlier
Factor

Isolation
Forest

One-Class
SVM

Auto-
encoder

Confusion
Matrix

−1 +1 −1 +1 −1 +1 −1 +1

−1 142 22 148 16 144 20 125 39

+1 14 150 24 140 13 151 19 145

Accuracy 89.02 % 87.80 % 89.94 % 82.32 %

Sensitivity 86.59 % 90.24 % 87.80 % 76.22 %

Specificity 91.46 % 85.37 % 92.07 % 88.41 %

Regarding the specificity, which is responsible for low false alarm rates, best results were

received again by the OC SVM with 92 %. The high sensitivity of the Isolation Forest

resulted in the worst specificity of all algorithms with 85 %. In conclusion, comparing

the four MLAs across all three evaluation methods, the OC SVM clearly performed best.

In the midfield is the LOF, which obtained only slightly better results than the Isolation

Forest. The Autoencoder performed worst.

5.2.2 Results Based on Anomaly Types

To investigate which type of error was caused by which type of abnormal data, the

accuracy, sensitivity and specificity of each algorithm was evaluated a second time in

relation to each type of abnormal data. The specific results can be seen in Table 5.2.

For the type sport, all algorithms performed very well and achieved the best results,

reaching accuracy scores of 93 % and above. For sensitivity, three of the four algorithms

reached 100 %. Only the LOF was a little worse at 98 %. Specificity showed also good

results. The worst algorithm, the Isolation Forest, reached 86 %. The best specificity

was obtained by the OC SVM with 92 %. Over all three evaluation types regarding the

abnormal time-series sport, the OC SVM performed with the highest scores. The lowest

scores were achieved by the Isolation Forest.

The results differed for the other two types of anomalous time-series measurements. The

OC SVM and the Isolation Forest scored better results for type metro whereas the LOF

and the Autoencoder scored better for the anomaly class eating.

For the type metro, the highest accuracy was achieved by the Isolation Forest with

91.35 %, the lowest accuracy by far from the Autoencoder with 72 %. The Isolation
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Table 5.2: Detailed classification results of the machine learning algorithms split
according to the selected type of abnormal data.

Sport Metro Eating

Local
Outlier
Factor

Confusion
Matrix

−1 +1 −1 +1 −1 +1

−1 63 1 37 15 42 6

+1 6 58 5 47 3 45

Accuracy 94.53 % 80.77 % 90.63 %

Sensitivity 98.44 % 71.15 % 87.50 %

Specificity 90.63 % 90.38 % 93.75 %

Isolation
Forest

Confusion
Matrix

−1 +1 −1 +1 −1 +1

−1 64 0 51 1 33 15

+1 9 55 8 44 7 41

Accuracy 92.97 % 91.35 % 77.08 %

Sensitivity 100 % 98.08 % 68.75 %

Specificity 86.15 % 84.62 % 85.42 %

One-Class
SVM

Confusion
Matrix

−1 +1 −1 +1 −1 +1

−1 64 0 45 7 35 13

+1 5 59 5 47 3 45

Accuracy 96.09 % 88.46 % 83.33 %

Sensitivity 100 % 86.54 % 72.92 %

Specificity 92.19 % 90.38 % 93.75 %

Auto-
encoder

Confusion
Matrix

−1 +1 −1 +1 −1 +1

−1 64 0 29 23 32 16

+1 7 57 6 46 6 42

Accuracy 94.53 % 72.12 % 77.08 %

Sensitivity 100 % 55.77 % 66.67 %

Specificity 89.06 % 88.46 % 87.50 %
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Forest also performed best in terms of sensitivity with 98 %. The next best algorithm,

the OC SVM, achieved 87 % sensitivity. The Autoencoder was the worst performing

MLA with a very low sensitivity of 56 %. The OC SVM and the LOF achieved the

highest specificity with 90 % each, followed by the Autoencoder with 88 % and the

Isolation Forest with 85 %. The OC SVM was again the best-performing algorithm over

all three evaluation methods, closely followed by the Isolation Forest. The LOF obtained

only slightly worse results. The Autoencoder reached the lowest scores.

Last but not least, the results for the anomaly type eating. The best results regarding

accuracy were achieved by the LOF, being slightly better than 90 %. The worst result

were recorded by the Isolation Forest and the Autoencoder with 77 % each. Regarding

sensitivity, the LOF performed again as best algorithm, the others being all at least 14 %

less sensitive. In the case of specificity, the LOF had the best results together with the OC

SVM, each having a specificity of almost 94 %. The Isolation Forest and the Autoencoder

reached a specificity of 85 % and 88 % respectively. Overall, the LOF performed for the

type eating a little better than the OC SVM. Even though the Autoencoder achieved

better results with the type eating than with the type metro, it was still the worst of all

four algorithms. But, the results of the Isolation Forest were just slightly better.
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Discussion

The goal of this thesis was to asses the hypothesis if a real-time body temperature and

heart rate monitoring system enables personalized classifications of physiological response

patterns as either normal or abnormal. For this reason, five primary objectives were

defined and implemented. This chapter will analyze, interpret and then in detail discuss

the results presented in the previous two chapters with regard to the fulfillment of the

these objectives. Then, a final conclusion will be drawn in which the hypothesis will be

accepted or rejected.

To begin with, it should be said that the evaluations conducted during the implementa-

tion of the objectives were performed on one subject (N = 1). Therefore, the discussions

of Sections 6.1 and 6.3 are only valid for this subject and no statistical significance can

be derived.

6.1 Cosinuss◦ One Sensor

The first objective was to evaluate the measurement quality of the chosen Cosinuss◦ One

sensor and therefore its suitability for real-time detection and classification of changes in

vital signs. The Cosinuss◦ One sensor was chosen because of its supposedly comfortable

wearing position in the ear, its long battery life, its affordability and most important its

promised ability to measure BT and HR with high accuracy in one device.

Although the manufacturer promises a high wearing comfort due to the used materials,

this could not be confirmed by the subject. In the first few hours after the sensor had

been placed in the ear, it was comfortable and not disturbing in any situation. It was

also often the case that the subject forgot that he was wearing the sensor. But, after

wearing it for several hours (> 4h), his ear began to hurt. Therefore, the sensor had
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to be removed for at least 30 minutes to be able to wear it painlessly again. However,

this is a personal opinion of the subject and could not be the case for others. But, it is

not beneficial for continuous measurements. Furthermore, it was pleasing that the one

hour indicated for charging the sensor was always adhered to. With its mid-tier price

segment and if the sensor would not start to hurt in the ear after a certain amount of

time, the alternating use of two sensors could guarantee 100 % continuous recording of

vital parameters in everyday life.

The most important selection aspect of the Cosinuss◦ One sensor was the promised high

measurement accuracy by the manufacturer. For a system, as it was developed in this

thesis, data quality is a critical parameter for the overall system performance. In other

words, the classification accuracy of the MLAs can only be as good as the data used for

their training. If the measured data is noisy or inaccurate, the accuracy, sensitivity and

specificity of the selected algorithms will decrease. Since evaluations of Cosinuss◦ One

HR measurements were already carried out in other reviews, which confirmed the high

quality of this measurement type, this thesis only dealt with the quality evaluation of the

BT measurements. The first observation made during the sensor evaluation is that the

exact positioning of the sensor in the ear plays an important role in obtaining accurate

BT measurements. It took the subject some practice until the sensor was positioned

in the perfect place and led to possibly accurate measurements. Although the sensor is

designed for usage during sports, strong movements could move the sensor slightly in

the ear, leading to a significant decrease in measurement accuracy. This is not only the

case for BT, but has also been observed in HR measurements. The additional grab rail,

included in the delivery scope of the sensor, partially counteracted this.

The actual BT measurement evaluation of the Cosinuss◦ One sensor was then carried

out in two steps. First, the measurements were assessed for their general validity before

comparing them with those of a commercially available digital thermometer. It was

noticeable that the Cosinuss◦ One sensor needs an initialization time of about four to

six minutes to display measurements in a for a human normal interval. In contrast, the

digital thermometer, which was used as a reference for evaluation, measured a feasible

BT after about one minute of initialization. Furthermore, it was surprising how strongly

the BT measurements were dependent on ambient temperatures. With a cold outside

temperature around 8 ◦C or windy conditions, the measurements could fall as low as

31 ◦C. This is outside of a valid range and no human could withstand a BT this low.

Conversely, direct solar radiation could increase BT measurements in regions associated

with fevers. This could be normal for a human, especially during prolonged stay in

very hot and humid regions as described in the literature. But, since the sensor was also

sensitive to cold environmental temperatures and exposure to high temperatures was just

for a short time, it is more likely that these changes were influenced by the environment
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as well. Surrounding temperature changes in more stable locations, like inside a building

caused by heating, air conditioning or an open window, could also influence the BT

measurements of the Cosinuss◦ One sensor. Even though these fluctuations were still

in the normal BT range of a human (36 ◦C - 37.5 ◦C), it is unlikely that they were

just normal fluctuations. It is more plausible that they were also due to environmental

changes.

In a second step, the measurements of the Cosinuss◦ One sensor were compared with

measurements of a commercially available digital thermometer. This comparison showed

big deviations. In a controlled environment within a building, while the subject was

sitting on a chair, there was an average measurement difference almost 0.5 ◦C. But, both

devices showed the same tendencies in their measurements. Additionally, the Cosinuss◦

One sensor detected during the measurements strong fluctuations in short time intervals,

which are not feasible. However, some of the difference between the two sensors could

be attributed to the different measuring methods and positions.

During the second direct comparison, while the subject was exercising on an elliptical

trainer, there was an even bigger difference with no tendency similarities. The BT mea-

surements of the digital thermometer increased significantly after beginning to exercise,

stabilized after the development of sweat and then returned to the initial values after

finishing the workout. This corresponds to patterns as described in the literature. In

contrast, the BT measured by the Cosinuss◦ One decreased during the first part of the

workout. In the second part, the BT rose again to the initial values, only to drop one

more time after the workout ended. A possible explanation for these measurements could

be related to development of sweat. At the beginning of the workout, i.e. when the sub-

ject starts to sweat and thus sweat is present on the skin, the measured BT drops in

combination with the surrounding cold temperature. This is then compensated by the

physical activity, increasing the internal BT of the subject. A similar change can be

observed after the workout. Sweat is still on the test person’s body and therefore cools

it, but physical activity is no longer available for compensation. As a consequence, the

BT drops again.

As a conclusion, it can be said that the Cosinuss◦ One sensor did not measure BT

accurately for the subject. Its measurements were strongly influenced by the environment

in which they took place. Since measurements in same environments behaved mostly with

the same tendency, i.e. had the same inaccuracy, the measured BT of the Cosinuss◦ One

sensor can still be used for anomaly detection. Measurements during the deterioration

of a patient’s health will not reflect the correct BT, but will still be different from

measurements in a healthy state of the patient.
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6.2 Proof-of-Concept Prototype

The second and third objectives of this thesis were to develop an architectural concept

for a distributed real-time monitoring and classification system of vital signs and to

implement this concept as a proof-of-concept prototype.

The designed architectural concept proposes three major components, a sensor for mea-

suring selected vital signs, a ML server for storage of training data and continuous train-

ing of the MLAs in a person-related manner, and a mobile application for classification

of new measurements. Additionally, the mobile application acts as a bridge between the

two other components and the user. The concept was designed as a multi-tier distributed

system, where the connection between sensor and mobile application is built as a point-

to-point architecture. This design was chosen because the communication between the

sensor and the mobile application is of private nature and does not have to include other

devices. The communication between the ML server and the mobile application was de-

signed as client-server architecture, since the ML server provides his service to multiple

mobile applications. The use of a sensor and a mobile application in the system design

allow continuous recording and monitoring of PRPs corresponding to activities, diseases

and the environmental context, as the mobility of this part of the system is guaranteed.

The mobile application also displays the recordings and results of the MLAs live to the

user, which allows him to track his data. Outsourcing the storage and training of the

MLAs to a ML server brought the advantage that the most complex part, in terms of

computation, is not carried out on the mobile application itself. This saves storage space

and battery power on the device. The disadvantage is the necessary Internet connection

for uploading the measured training data to the server and for downloading the trained

ML models to the mobile application. But, after the model has been downloaded to the

application, future new data can be classified without Internet connection. Since the

initial phase of training data collection is much shorter than the later continuous clas-

sification phase, this trade off between required Internet connection and saving storage

respectively computational resources could be accepted. As a consequence, this approach

eliminates one of the biggest sources of errors, making classifications possible as long as

the device and the sensor have battery power. Therefore, the conceptualized system has

a high resilience against network connection failures.

In addition, the conceptualized system should allow the user to include measurements

into the training process which led to false positive classifications, in order to reduce

future false alarms and to increase accuracy, sensitivity and specificity of the algorithms

over time. This represents a countermeasure to alarm fatigue. Using a cache for false

positive classification data when there is no Internet connection available, ensures that
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false positive measurements are not lost and can be sent later to the ML server. This

enables continuous learning if the MLAs are retrained in equal intervals.

The three components of the architectural concept were realized by the proof-of-concept

prototype using a Cosinuss◦ One sensor, an Android application and a Python Django

ML server. During their implementation, great importance was assigned to select and

apply already established but modern technologies in order to make the system as flexible

and modular as possible, trying to minimize future extension and maintenance efforts:

• In addition to the above-mentioned advantages, the Cosinuss◦ One sensor offered

a further one in terms of implementation. Its open source BLE API simplified the

integration into the proof-of-concept prototype. The API, based on standardized

BLE GATT profiles, made it possible for the Android application to connect and

read the measured vital sign values effortlessly.

• Using Android as the host OS for the mobile application had the advantage that a

versatile SDK and specialized libraries for BLE and REST message exchange were

available to implement the tasks of the application.

• Python and its libraries for development of the ML server made fast prototyping

possible. Due to following the REST architecture paradigm, modularity increased

while complexity was lowered, leading to a desired loose coupling between system

components. An example for this would be that the database for storage of the

vital sign measurements can be changed without changing any other part of the

system. Furthermore, using a REST architecture in the ML server component

made the system more reliable, portable, scalable and efficient. As a result, the

ML server supports very light weight clients, whose functionality can be increased

by the server using code transfer. One example is sending the trained ML models

to the mobile phone application as proposed in the architectural concept.

Two important parts of the initial concept were not realized by the proof-of-concept

implementation. On one hand, the models of the trained MLAs were not transferred

to the Android application. The classification of new measurements after the training

phase takes also place on the server component. For this to work, the classification data

had to be sent to the server, as it was done with the training data, but stored separately.

On the other hand, the user feedback was not implemented. These two missing features

were omitted for time and simplicity reasons, since they had no influence on assessing

the hypothesis. However, for a later productive use of the system this would have to be

added in order to offer the best possible platform to users.
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Additionally, by deploying the prototype on a Raspberry Pi, it could be shown that the

system can be set up at everyone’s home for little cost. The single-board computer,

which has a low computing power compared to normal servers, could be utilized because

the used libraries favor efficient calculations and the implemented REST architecture

supports scalability. Using this approach, a user has full self-determination over the

system and the collected data. The data is not stored on third party servers.

6.3 Machine Learning Algorithms

The last two objectives were to prove that MLAs can be used to learn the individual

PRPs of a person’s vital signs, taking into account activities, demographic factors and

the environmental context, and thus can classify a change in tendency of vital signs as

physiologically normal or abnormal.

To be able to achieve these two objectives, the algorithms LOF, Isolation Forest, OC

SVM and Autoencoder were selected, added to the system and evaluated on the basis

of data collected from one subject. When selecting suitable algorithms for anomaly

detection, great importance was attached to the fact that they are derived from well

known and frequently used MLAs, which differ in their mathematical foundations. The

biggest advantage of all these algorithms is that they consider great inequality in the

distribution of the data. This means that anomalies occur only as a small fraction of

all data. In contrast, other MLAs often make the assumption that the different possible

classes in the data are evenly distributed. A disproportionately large represented class

can then lead to biased classification results.

In order to test the performance of the algorithms, a baseline of vital signs was recorded

as training data for three consecutive days (72 h). By recording for this amount of time,

it could be ensured that enough training data was available and that the curse of dimen-

sionality could be avoided. The recorded data was labeled according to the performed

activity and location. Since irregular vital sign data cannot be generated on purpose, the

data recorded during sports, in the metro and while eating were later removed from the

training data and regarded as artificial anomalies. To train the algorithms, the training

data was then split into chunks of two minutes with an overlap of 30 seconds. The input

to the MLAs was based on a data driven approach and supplemented by four statistical

features, since all time series have the same length and fast analysis in health data is

crucial. A data-driven approach was only possible because the number of values in one

time-series was not very high. If time-series with more measurements would be used, a

more statistically driven approach or the generation of more training data would have to

be considered to avoid the curse of dimensionality. Then, after training the MLAs using
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the grid search method, the accuracy, sensitivity and specificity of each algorithm was

evaluated. All four algorithms achieved good results with accuracies between 82 % and

90 % for the subject. The OC SVM performed best with an accuracy of 89.94 %. For

the individual types of artificial anomalies, the best results were obtained for the type

sport. All algorithms achieved an accuracy of over 93 %. These results can be attributed

to fast noticeable changes in BT and HR after starting an exercise session, which can

even be felt by the performer. The literature describes that during physical exertion,

HR increases and a person starts to sweat to regulate BT. The good results for sports

were to be expected and show that the algorithms can learn PRPs. In the other two

categories of artificial anomalies, the changes are not obvious to a person, whereas for

the algorithms they are. They could classify these types as artificial anomalies, but with

lower accuracy than during sport. Whether the type metro or eating was better detected,

depended on the algorithm. However, results were always higher than an accuracy of

75 %, except in the case of type metro using the Autoencoder. The exact results, also

for sensitivity and specificity of the MLAs, can be found in Table 5.2. A reason for the

worse results for the activities eating and metro, compared to the activity sport, are

because of the smaller difference between the measured BT and HR values in relation to

normal data. In addition, the transition phase for adaption of the vital sings to the new

situation is longer. Missclassifications were mainly caused by boundary measurements

between activity changes. It can therefore be assumed that correct classifications will

occur with delay. Another reason for correct but delayed classification can be traced

back to the selected time frame of two minutes for the analysis. For an anomaly to be

detected as such, an algorithm needed at least half of all measurements of one time-series

in an anomaly state. This would correspond to a minimum delay of at least one minute

until classifications change between normal and abnormal or vice versa. This could limit

very time critical medical anomaly detection, especially when the analyzed time frame

is increased. The reason why the Autoencoder performed worst in all categories could

be due to the fact that no special layers were used. Better results could probably be

achieved using more sophisticated ANNs.

It is worth noting that the use of time in addition to measurements during training had

little impact on classification results. It is true that if abnormal data is always collected

at the same time, it can be detected more easily and the classification results increase.

This was taken into account during the experiment and the abnormal data was not

collected every day at the same time.

Deciding whether a measurement time-series is normal or should be examined more

closely, i.e. because it is regarded as abnormal, is very important in medical fields.

Many false positive anomaly detections can lead to the problem that physicians and

nurses no longer trust those systems and thus develop alarm fatigue. When making
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(a)

(b)

(c)

Figure 6.1: Comparison of the reconstruction error distribution for normal and the
three types of anomalous data with reference to the calculate decision boundary: (a)

sport, (b) eating, (c) metro.
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decisions in an automated fashion, they are mostly dependent on the selected threshold

for the algorithms. This threshold can be used to adapt an algorithm to its specific task

and therefore to change its sensitivity and specificity. But, an increasing specificity of an

algorithm often has the undesirable effect that its sensitivity decreases. The same applies

the other way around. This is visualized in Figure 6.1. It shows the reconstruction error

of the Autoencoder for normal and the three types of abnormal data in comparison to

the selected threshold. Shifting the threshold in Figure 6.1a to the right, by increasing

the acceptable error, would increase specificity. Sensitivity on the other hand would not

change because the threshold would move between the two different data types. Shifting

the threshold in Figure 6.1b to the left would decrease the specificity and increase the

sensitivity, therefore leading to more undesired false alarms. However, it would insure

that all anomalous data is recognized. Changing a threshold can also have no desired

effect. In Figure 6.1c, to improve specificity, the threshold would have to be shifted

to the left by such an extent that the sensitivity would be close to zero. In contrast,

shifting the threshold to the right would not have much effect on sensitivity. It would

further worsen specificity. For the other three algorithms the threshold is calculated

automatically during training to maximize accuracy. If sensitivity or specificity should

get higher weights than accuracy, the threshold has to be calculated separately.

Another problem when training MLAs is overfitting. This means that although the algo-

rithm can classify the available training data very accurately, it fails for similar unknown

data. This would lead to many false positive classifications in anomaly detection. A

possible example of overfitting can be seen in Figure 6.2. It shows a fraction of a trained

Isolation Forest. When not defining a maximal depth of a tree, the training process will

isolate each training sample, building a very large tree, possibly overfitting the data. In

order to solve this problem, the same amount of normal data as available abnormal data

was not used in training. This data has been retained for evaluation. In this way, it

could be ensured that similar normal data could be classified correctly later and that no

or only a little overfitting is present.

From the performance results of the four MLAs and their subsequent discussion, it can be

assumed that the two objectives of this part of the thesis have been fulfilled. The selected

MLAs were successfully used for anomaly detection in vital sign time-series data. Since

the algorithms have worked quite well, it can be assumed that for the same subject, other

algorithms based on the same mathematical principles could also be applied to anomaly

detection in vital sign time-series data. Possibly achieving better results. However, this

still needs to be validated.
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Figure 6.2: Excerpt from a single decision tree with possible overfitting of a trained
Isolation Forest.
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6.4 Conclusion

This thesis has taken a first step towards the development of a real-time classification

system for anomalies in vital sign data in order to identify the deterioration of a persons

health. The primary objectives of this thesis were the evaluation of the Cosinuss◦ One

sensor, the development of an architectural concept for a real-time vital sign classification

system, its implementation in a proof-of-concept prototype and the evaluation of its

inherent MLAs. The selected MLAs for anomaly detection in vital sign time-series data

were LOF, Isolation Forest, OC SVM and Autoencoder. These algorithms achieved an

accuracy between 82 % and 90 %. The best result was obtained using the OC SVM

with an accuracy of 89.94 %. Based on the results and the subsequent discussion it

can be assumed that a real-time body temperature and heart rate monitoring system

enables personalized classifications of physiological response patterns as either normal or

abnormal. The hypothesis of this master thesis is therefore supported.

This academic work is subject to two main limiting factors. On one hand, due to a lack

of resources, the experiments to evaluate the Cosinuss◦ One sensor and the MLAs were

only conducted on one person (N = 1). In order to obtain statistically meaningful results,

the evaluations have to be conducted during the same scenarios on a bigger sample size

(N > 1).

On the other hand, the accuracy, sensitivity and specificity of the MLAs were only

evaluated on regular medical data using different activities as the artificial anomalous

counterpart. This does not imply that the system will work for diseases as well. More

extensive testing would be needed to show that this real-time classification system of

vital signs can detect the deterioration of a subjects health. Possibilities for approaching

these limitations are discussed among other aspects within the following last chapter

concerning the outlook.
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Outlook

In this last Chapter, the thesis will be finalized by an extensive outlook on future research

topics. Since the real-time vital sign classification system was developed as proof-of-

concept prototype, there are several ways in which this work could be continued to

deploy it in a productive environment. The extension possibilities include the use of

more data obtained by multiple other sources, changes in the architecture of the system,

further analysis and application of different MLAs and the recorded data, and a more

detailed overall evaluation of the system. These options are explored in more detail in

the following sections.

7.1 Data Sources

As mentioned in the previous chapter, data sources are very important for a system like

the one presented in this thesis. More sources and thus more available data for the de-

tection of vital sign irregularities could improve the results of the MLAs. Therefore, the

vital signs recorded by the Cosinuss◦ One sensor could be supplemented by additional

medical and non-medical data sources. Besides BT and HR, other vital signs like respira-

tory rate or blood pressure could be recorded and used for anomaly detection. However,

it could be difficult to find a suitable sensor that integrates discreetly into everyday life

and therefore is not disturbing in a normal daily routine. Non-medical data could also

be included in the analysis. Nowadays, almost every mobile phone has an acceleration-

and location sensor. They could provide important data about the current situation of

a user. For example, data from the accelerometer could be used to detect falls, or to

trigger alarms if a patient is not moving at an unusual time. Another possible approach

would be to investigate the influence of each data source and individual vital sign on the

classification result.

71
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7.2 System Extensions

For the use of the real-time classification system in a productive mode, the proof-of-

concept prototype should be first adapted to the original architectural concept. In par-

ticular, porting the MLAs to the Android application, in order to prevent dependency

on a Internet connection for classifications, would have priority. This would increase the

resilience of the system. It would also be advisable to implement the user feedback to

steadily reduce the false positive classification rate. Furthermore, the mobile application

could be made available for other mobile operating systems like iOS.

Mobile phones can pose another problem. They often interfere with everyday life or are

not at hand, because for example, they are stored in a pocket or a bag. One solution

would be to port the mobile application to smart watches. They are less intrusive in

everyday life and alarms can be communicated to the user even faster and more reliable,

using different vibrations on the wrist depending on the severity of the alarm.

Another extension possibility of the system is concerned with the type of alarms displayed

to a user in case of a possible anomaly. A single alarm could be extended by a series of

alarms, applying different escalation levels. If the first alarm is not confirmed within a

certain amount of time by the user, it could be relayed to family members or even to a

medical facility in order to initiate the appropriate medical follow-up. Methods from the

field of Ambient Assisted Living would be a useful starting point for this extension.

7.3 Analysis and Application of Machine Learning Algo-

rithms

The part of anomaly classification using MLAs also leaves room for expansion. In order

to further improve the accuracy, sensitivity and specificity of the selected algorithms, a

more in-depth exploration and analysis of the measured data would make sense. Besides

using the measured vital signs and the four calculated values for the classification of the

time series, additional statistical features could be computed and incorporated. There

are many features that would be possible including maximum and minimum or skewness,

kurtosis, trend and seasonality. A good overview of important time-series features and a

description of a Python library for their computation with the name tsfresh was published

by Christ et al. [103].

Also, the selected algorithms could be improved. Instead of using the generated threshold

value of the used scikit-learn library, it could be calculated manually for Isolation Forest,

LOF and OC SVM. This would lead to more freedom and control over sensitivity and
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specificity. The Autoencoder could be improved as well. At the moment a very simple

ANN is used. More sophisticated ones like recurrent neural networks or convolutional

neural networks (CNN) could improve the results of the Autoencoder. A successfull

example of using a CNN for classification of time-series data is given by Mahabal et

al. [104]. In order to classify their data, the initial time-series inputs were converted into

two-dimensional image like representations, which enabled to use different CNN kernels.

Other extension possibilities include testing other algorithms for the detection of anoma-

lies in time-series data and playing with the analysis time frame. As already mentioned

at the end of Section 2.4, there exists a wide range of possible MLAs based on different

mathematical concepts. Additionally, by using longer time-series with longer intervals

between measurements, it could be tested if MLAs can also recognize significant long

term changes.

7.4 System Evaluation on Irregular Medical Data

The system has so far only been tested for the detection of various activities, which where

defined in advance as artificial anomalies. In order to use it for the initially defined scope

in the medical field, it must be tested more extensively using real irregular medical data.

But, as mentioned in the introduction chapter, irregular medical data generation and

recording is non-trivial. However, there are some possible cases.

A simpler one includes the measurements of irregular data during influenza illness. Ev-

ery year there are seasonal influenza epidemics during the winter months [105]. This

should make it easier to use the system to record measurements during fevers and other

symptoms. Evaluating the implemented system and its MLAs on this data could show

that this type of regularly occurring disease can be recognized as anomaly.

In another example, the system could be applied to cardiovascular diseases such as heart

attacks or strokes, the most common causes of deaths worldwide [106]. The application

of the system could be used to detect emerging irregularities, which are indicative of

disease onset. It would open up the possibilities to apply appropriate treatments earlier

and thus prevent possible deaths.
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Appendix A

Visualized Measurements

(a)

(b)

Figure A.1: Comparison of body temperature and heart rate measurements between
the activities sitting and eating: (a) sitting, (b) eating.
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(a)

(b)

(c)

Figure A.2: Comparison of body temperature and heart rate measurements between
the activities walking, metro and sport: (a) walking, (b) metro, (c) sport.



Appendix B

FHIR JSON Messages

1 {

2 "resourceType":"Observation",

3 "status":"final",

4 "category":[

5 {

6 "coding":[

7 {

8 "system":"http :// hl7.org/fhir/observation -category",

9 "code":"vital -signs",

10 "display":"Vital Signs"

11 }

12 ],

13 "text":"Vital Signs"

14 }

15 ],

16 "code":{

17 "coding":[

18 {

19 "system":"http :// loinc.org",

20 "code":"8310-5",

21 "display":"Body temperature"

22 },

23 {

24 "system":"http :// snomed.info/sct",

25 "code":"386725007" ,

26 "display":"Body temperature (observable entity )"

27 }

28 ],

29 "text":"Body temperature"

30 },

31 "subject":{

32 "reference":"Patient /58aa5be2 -3fe5 -3e79 -925a-3 a626e6722a7",

33 "display":"Anonymous Anonymous"

34 },

35 "effectiveDateTime":"2018 -07 -25 T16 :29:08 -04:00" ,

36 "interpretation":{

37 "coding":[
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38 {

39 "code":"00002" ,

40 "display":"Sitting",

41 "system":"http :// fhir.mt.retwet.com/current -activity"

42 },

43 {

44 "code":"00001" ,

45 "display":"Inside",

46 "system":"http :// fhir.mt.retwet.com/current -location"

47 }

48 ]

49 },

50 "issued":"2018 -07 -25 T16 :29:08.609 -04:00" ,

51 "performer":[

52 {

53 "reference":"Patient /58aa5be2 -3fe5 -3e79 -925a-3 a626e6722a7",

54 "display":"Anonymous Anonymous"

55 }

56 ],

57 "valueQuantity":{

58 "value":35.259998321533203125 ,

59 "unit":"C",

60 "system":"http :// unitsofmeasure.org",

61 "code":"Cel"

62 },

63 "bodySite":{

64 "coding":[

65 {

66 "system":"http :// snomed.info/sct",

67 "code":"25342003" ,

68 "display":"Middle ear structure (body structure )"

69 }

70 ],

71 "text":"Middle ear structure (body structure )"

72 },

73 "method":{

74 "coding":[

75 {

76 "system":"http :// snomed.info/sct",

77 "code":"56342008" ,

78 "display":"Temperature taking (procedure )"

79 }

80 ],

81 "text":"Temperature taking (procedure )"

82 }

83 }

Listing B.1: Example of a labeled body temperature measurement encoded as
Health Level 7 Fast Healthcare Interoperable Resources Observation (STU3) using

JSON format.

1 {

2 "resourceType":"Observation",

3 "status":"final",
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4 "category":[

5 {

6 "coding":[

7 {

8 "system":"http :// hl7.org/fhir/observation -category",

9 "code":"vital -signs",

10 "display":"Vital Signs"

11 }

12 ],

13 "text":"Vital Signs"

14 }

15 ],

16 "code":{

17 "coding":[

18 {

19 "system":"http :// loinc.org",

20 "code":"8867-4",

21 "display":"Heart rate"

22 },

23 {

24 "system":"http :// snomed.info/sct",

25 "code":"364075005" ,

26 "display":"Heart rate (observable entity )"

27 }

28 ],

29 "text":"Heart rate"

30 },

31 "subject":{

32 "reference":"Patient /58aa5be2 -3fe5 -3e79 -925a-3 a626e6722a7",

33 "display":"Anonymous Anonymous"

34 },

35 "effectiveDateTime":"2018 -07 -25 T16 :29:08 -04:00" ,

36 "issued":"2018 -07 -25 T16 :29:08.605 -04:00" ,

37 "performer":[

38 {

39 "reference":"Patient /58aa5be2 -3fe5 -3e79 -925a-3 a626e6722a7",

40 "display":"Anonymous Anonymous"

41 }

42 ],

43 "valueQuantity":{

44 "value":61,

45 "unit":"beats/minute",

46 "system":"http :// unitsofmeasure.org",

47 "code":"/min"

48 },

49 "bodySite":{

50 "coding":[

51 {

52 "system":"http :// snomed.info/sct",

53 "code":"25342003" ,

54 "display":"Middle ear structure (body structure )"

55 }

56 ],

57 "text":"Middle ear structure (body structure )"

58 },
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59 "method":{

60 "coding":[

61 {

62 "system":"http :// snomed.info/sct",

63 "code":"72075005" ,

64 "display":"Photoplethysmography (procedure )"

65 }

66 ],

67 "text":"Photoplethysmography (procedure )"

68 }

69 }

Listing B.2: Example of an unlabeled heart rate measurement encoded as Health
Level 7 Fast Healthcare Interoperable Resources Observation (STU3) using JSON

format.

1 {

2 "category":[

3 {

4 "coding":[

5 {

6 "code":"procedure",

7 "display":"Procedure",

8 "system":"http :// hl7.org/fhir/observation -category"

9 }

10 ],

11 "text":"Procedure"

12 }

13 ],

14 "code":{

15 "coding":[

16 {

17 "code":"anomaly -classification",

18 "display":"Anomaly Classification",

19 "system":"http :// fhir.mt.retwet.com/vital -sign -classification"

20 }

21 ],

22 "text":"Anomaly Classification"

23 },

24 "effectiveDateTime":"2018 -07 -27 T15 :41:00.788376 -04:00" ,

25 "interpretation":{

26 "coding":[

27 {

28 "code":"N",

29 "display":"Normal",

30 "system":"http :// hl7.org/fhir/v2 /0078"

31 }

32 ],

33 "text":"Normal"

34 },

35 "issued":"2018 -07 -27 T15 :41:00.788474 -04:00" ,

36 "method":{

37 "coding":[

38 {
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39 "code":"isolation -forest",

40 "display":"Isolation Forest",

41 "system":"http :// fhir.mt.retwet.com/machine -learning -classification"

42 }

43 ],

44 "text":"Isolation Forest"

45 },

46 "performer":[

47 {

48 "display":"Master Thesis Server",

49 "reference":"Organization /12v43g60 -bj3f -34j5-db53 -867 dtgff8rmsa"

50 }

51 ],

52 "status":"final",

53 "subject":{

54 "display":"Anonymous Anonymous",

55 "reference":"Patient/patient -58aa5be2 -3fe5 -3e79 -925a-3 a626e6722a7"

56 },

57 "resourceType":"Observation"

58 }

Listing B.3: Example of a classification result encoded as Health Level 7 Fast
Healthcare Interoperable Resources Observation (STU3) using JSON format.





Appendix C

Android Application Screenshots

The following eight figures show screenshots of the different Android application views,

in order of their use:

• Figure C.1: The initialize view to set the initial settings needed to run the appli-

cation.

• Figure C.2: The about view showing information about the Android application

and why it was developed.

• Figure C.3: The main view before the connection to the Cosinuss◦ One sensor is

established.

• Figure C.4: The connection view during search and establishment of the connec-

tion to the Cosinuss◦ One sensor.

• Figure C.5: The main view displaying the BT and HR measurements received

from the Cosinuss◦ One sensor and the dropdown fields for labeling the training

data.

• Figure C.6: The main view displaying the classification result received from the

Django ML server.

• Figure C.7: The settings view showing the different options.

• Figure C.8: The subsettings view for selection of a MLA.
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Figure C.1: Screenshot initialization. Figure C.2: Screenshot about view.

Figure C.3: Screenshot before con-
nection establishment.

Figure C.4: Screenshot during con-
nection establishment.
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Figure C.5: Screenshot training. Figure C.6: Screenshot classification.

Figure C.7: Screenshot overall set-
tings.

Figure C.8: Screenshot settings for
machine learning algorithm selection.





Appendix D

Digital Contents

The CD attached to this appendix has the following contents:

• Complete thesis in the file thesis.pdf and the corresponding presentation in the file

presentation.pdf.

• Java code of the implemented Android application in the folder client.

• Python code of the implemented Django ML server in the folder server.

• Recorded measurements during the experiment to test the proof-of-concept proto-

type in the folder server/files/storage.
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