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Resumen
Cada invierno, el sistema hospitalario chileno enfrenta una presión asistencial marca-

da por el aumento estacional de hospitalizaciones pediátricas por infecciones respiratorias
agudas (IRA). Esta tesis propone y evalúa una metodología predictiva para anticipar la
ocupación de camas pediátricas durante estos períodos críticos, comparando un modelo
epidemiológico compartimental (SIR) con un modelo de ensamble penalizado basado en
aprendizaje de máquinas.

En el Capítulo 1 se contextualiza el problema desde una perspectiva epidemiológica y
operacional, revisando la estacionalidad, la variabilidad interanual y la planificación hospi-
talaria en Chile. En el Capítulo 2 se detalla el diseño metodológico, el preprocesamiento y
la construcción de series temporales a partir de datos del DEIS. En el Capítulo 3 se formula
el modelo de predicción de hospitalizaciones, combinando predictores crudos y suavizados
mediante regresión supervisada y ensamblado penalizado (L1). En el Capítulo 4 se estima
la ocupación hospitalaria mediante un modelo de flujo basado en la distribución empírica
de duración de la estancia. Finalmente, en el Capítulo 5 se presentan los resultados del
modelo aplicado al Hospital Luis Calvo Mackenna (HLCM) en 2023.

El modelo de ensamble con ventana de 21 días y horizonte de 14 días alcanzó el mejor
desempeño: RMSE = 5,46, MAE = 3,75 y R² = 0,12 en la predicción de hospitalizaciones.
Para la estimación de ocupación de camas, el modelo de ensamble obtuvo MAE = 21,75,
RMSE = 29,28 y R² = 0,174, superando al modelo SIR (MAE = 32,26; RMSE = 41,15;
R² = -0,632). El modelo SIR, en cambio, anticipó con mayor oportunidad el peak (2 de
junio vs 5 observado).

En conjunto, ambos modelos aportan ventajas complementarias: el SIR favorece la aler-
ta temprana, mientras que el modelo de ensamble entrega mayor precisión en la magnitud y
forma del peak. Estos hallazgos permiten fortalecer la planificación operativa hospitalaria
frente a brotes estacionales de IRA pediátricas.
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Abstract
Each winter, the Chilean hospital system faces a surge in pediatric admissions due to

acute respiratory infections (ARI). This thesis proposes and evaluates a predictive metho-
dology to estimate pediatric bed occupancy during critical seasonal periods, comparing a
compartmental epidemiological model (SIR) with a penalized ensemble model based on
machine learning.

Chapter 1 frames the problem in its epidemiological and operational context, revie-
wing seasonality, interannual variability, and hospital planning in Chile. Chapter 2 des-
cribes the methodological design, preprocessing, and construction of time series using
DEIS data. Chapter 3 formulates the hospitalization prediction model by combining raw
and smoothed features through supervised regression and L1-penalized ensemble learning.
Chapter 4 estimates bed occupancy using a hospital flow model based on empirical length-
of-stay distributions. Finally, Chapter 5 presents the results for the Luis Calvo Mackenna
Hospital (HLCM) in 2023.

The ensemble model with a 21-day window and 14-day forecast horizon showed the best
performance: RMSE = 5.46, MAE = 3.75, and R² = 0.12 in hospitalization prediction.
For bed occupancy estimation, the ensemble achieved MAE = 21.75, RMSE = 29.28, and
R² = 0.174, outperforming the SIR model (MAE = 32.26; RMSE = 41.15; R² = -0.632).
However, the SIR model anticipated the peak earlier (June 2 vs June 5 observed).

Together, both models offer complementary advantages: the SIR model supports early
warning, while the ensemble model provides more accurate magnitude and shape estima-
tion of the peak. These results support improved operational planning for pediatric ARI
surges in hospital settings.
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Para ustedes, quienes se atreven a ver más allá de lo cómodo, quienes corren el riesgo de
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Introducción

0.1. Motivación y contexto

Cada invierno, el sistema hospitalario chileno enfrenta una tensión que se ha presentado
históricamente, pero cuya dinámica es incierta: el aumento abrupto de hospitalizaciones
pediátricas por enfermedades respiratorias agudas (IRA). Esta carga estacional, determi-
nada por la circulación viral, las condiciones climáticas y otros factores sociales y ambien-
tales, exige respuestas oportunas por parte de los hospitales y de las autoridades centrales.

Esta situación se ilustra mediante el árbol de problemas del colapso estacional, que
resume las causas estructurales y consecuencias asistenciales de los peaks por IRA (véase
la Figura 1). Sin embargo, la decisión sobre cuándo activar estrategias como la Campaña
de Invierno o contratar refuerzos clínicos depende en gran medida de la capacidad para
anticipar el peak de hospitalizaciones, tanto en su magnitud como en su fecha.

Figura 1: Árbol de problemas del colapso estacional en unidades de urgencia hospitalaria
por aumento de IRA.

Este trabajo surge a partir de una necesidad concreta identificada en el contexto del
proyecto FONDEF ID23I10423, liderado por la línea de Salud Digital del Centro de Mo-
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delamiento Matemático (CMM-SD) de la Universidad de Chile, en colaboración con el
Hospital Dr. Luis Calvo Mackenna (HLCM).

En este marco, se plantea la siguiente pregunta: ¿Es posible estimar y predecir la ocu-
pación diaria de camas pediátricas por causas respiratorias, con una anticipación suficiente
que permita apoyar oportunamente la toma de decisiones asistenciales y de gestión? Esta
pregunta puede abordarse a partir de los registros actualmente disponibles. Si bien no se
cuenta con acceso directo a datos abiertos provenientes de la Unidad de Gestión Centrali-
zada de Camas (UGCC), ni con series completas que permitan seguir longitudinalmente los
egresos hospitalarios por causa específica, el Departamento de Estadísticas e Información
en Salud (DEIS) del Ministerio de Salud pone a disposición una base robusta de registros
históricos de atenciones de urgencia ambulatoria y hospitalaria, los cuales constituyen una
fuente valiosa y central para el desarrollo de esta propuesta.

Ante estas limitaciones, el enfoque del problema fue reformulado desde una perspec-
tiva pragmática: se consideró que los ingresos hospitalarios diarios podían ser estimados
indirectamente a partir de las atenciones de urgencia respiratorias observadas, y que los
egresos podían modelarse como una función probabilística dependiente de la duración de
la estancia hospitalaria.

Esta formulación dio lugar a una metodología estructurada en dos componentes com-
plementarios: (1) un modelo de predicción autorregresivo que estima diariamente las aten-
ciones de urgencia respiratorias pediátricas, mediante un ensamble de algoritmos de apren-
dizaje de máquinas con control de sparsity ; y (2) un modelo de flujo hospitalario que simula
la ocupación diaria de camas pediátricas a partir de dichas predicciones, utilizando una
función de egreso a partir del ajuste empírico de la distribución de estancia hospitalaria.

A diferencia de otros enfoques que suponen una duración promedio fija de hospitaliza-
ción, el uso de una distribución probabilística permite representar la variabilidad observada
en la duración de estancia en los datos. Esto mejora la simulación de egresos diarios, es-
pecialmente en escenarios con asimetrías o colas largas en la distribución de estancias.

El modelo de ensamble implementado se basa en la metodología propuesta por Benítez-
Peña et al. (2021), donde se plantea un enfoque de optimización convexa para construir
ensambles poco densos (sparse ensembles) capaces de combinar múltiples regresores mi-
nimizando simultáneamente el error global y penalizando la participación de modelos con
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bajo rendimiento individual. Esta formulación permite seleccionar automáticamente un
subconjunto óptimo de regresores base, mitigando el sobreajuste y favoreciendo la inter-
pretabilidad del conjunto.

En este trabajo, se utilizaron como modelos base regresores heterogéneos: Random Fo-
rest, Regresión de Soporte Vectorial (SVR), Redes Neuronales Multicapa (MLP) y Long
Short-Term Memory (LSTM). Cada uno fue entrenado sobre ventanas temporales des-
lizantes de tamaño fijo, con ajuste de hiperparámetros mediante validación cruzada. La
selección de la combinación final se realiza resolviendo el siguiente problema de optimiza-
ción:

mı́n
α∈S

 L

(∑
f∈F

αff

)
︸ ︷︷ ︸

Pérdida del ensamble

+λ
∑
f∈F

αfLf︸ ︷︷ ︸
Penalización por desempeño individual

 (1)

donde:

• F representa el conjunto de modelos base f ,

• αf es el peso asignado a cada modelo,

• S =
{
α ∈ R|F| :

∑
f αf = 1, αf ≥ 0

}
es el simplex unitario,

• L es la pérdida global del ensamble (por ejemplo, error cuadrático medio),

• Lf es la pérdida individual del modelo f en un conjunto de validación, y

• λ es un parámetro de regularización que controla el compromiso entre precisión y
sparsity.

Este enfoque, conocido como selective sparsity, es equivalente a una forma de cons-
trained Lasso con norma ℓ1 ponderada, en la cual los pesos αf son penalizados propor-
cionalmente a su error individual, forzando la exclusión de modelos menos robustos en
el ensamble final. Las predicciones del ensamble fueron posteriormente utilizadas como
entrada para un modelo de estimación de ocupación de camas hospitalarias.

Por otro lado, para modelar la permanencia hospitalaria, se analizó empíricamente la
distribución de los días de estancia de pacientes hospitalizados por IRA en el HLCM du-
rante el año 2023. La distribución que mejor ajustó los datos, según los siguientes criterios
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de ajuste: el Criterio de Información de Akaike (AIC), el Criterio de Información Baye-
siano (BIC) y la Prueba de Kolmogorov–Smirnov (KS), fue la distribución exponencial. El
parámetro de la distribución exponencial, denotado por µ, fue estimado como el inverso
del promedio de días de estancia observados:

µ =
1

media de días de estancia
(2)

Esto permitió definir una función de probabilidad de egreso entre los días t y t + 1,
denotada como:

P (t) = e−µt − e−µ(t+1) (3)

Usando esta función, se formuló un modelo dinámico de ocupación de camas, que
simula día a día la evolución del número de camas ocupadas en función de los ingresos
recientes y la probabilidad de egreso asociada a cada día previo:

Bt+1 = Bt + ingresost+1 −
t∑

k=0

(ingresosk · P (t− k)) (4)

Donde Bt representa la ocupación estimada al día t, e ingresosk las hospitalizaciones
por IRA ocurridas en el día k previos al día de evaluación t. Esta formulación simula día
a día la dinámica de camas ocupadas, al considerar que cada cohorte de ingresos contri-
buye a la ocupación durante un número variable de días, según la distribución de estancia
hospitalaria.

El año 2023 evidenció un escenario crítico, con un aumento extraordinario en la ocu-
pación de camas pediátricas por causas respiratorias que tensionó significativamente la
red hospitalaria. Esta situación reflejó las limitaciones de las estrategias reactivas tradi-
cionales, como la Campaña de Invierno o la reconversión de camas, las cuales se apoyan
principalmente en experiencia histórica y datos retrospectivos.

En respuesta a este desafío, en Chile han comenzado a desarrollarse y utilizarse herra-
mientas predictivas orientadas a anticipar escenarios críticos en salud pública. Este trabajo
busca aportar a esa línea de trabajo, integrando enfoques de aprendizaje de máquinas y
ensamblado para mejorar la predicción de la demanda hospitalaria pediátrica. Al validar
el modelo con datos reales y adoptar un enfoque reproducible, este trabajo se propone
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como una contribución con potencial de adaptación a distintos contextos asistenciales.

0.2. Pregunta de investigación

¿En qué medida la aplicación de un modelo de ensamble basado en aprendizaje de
máquinas mejora la estimación de la amplitud y el momento del peak de ocupación de
camas en unidades pediátricas por enfermedades respiratorias agudas, en comparación
con un modelo epidemiológico tradicional, al analizar datos históricos hospitalarios?

0.3. Hipótesis

La integración de modelos de aprendizaje de máquinas mediante un esquema de en-
samble poco denso permite estimar con menor error la amplitud y momento del peak de
ocupación de camas en unidades pediátricas por enfermedades respiratorias agudas, en
comparación con un modelo epidemiológico tradicional, al ser validada sobre datos histó-
ricos de hospitalizaciones.

0.4. Objetivos

General: Evaluar la capacidad predictiva de un modelo de ensamble, frente a un modelo
epidemiológico, para estimar la ocupación de camas en unidades pediátricas por enferme-
dades respiratorias agudas.

Específicos

1. Analizar los modelos predictivos existentes y evaluar su aplicabilidad para predecir
la amplitud del peak de ocupación de camas hospitalarias.

2. Caracterizar las variables que influyen en la amplitud del peak de ocupación de camas
durante temporadas de alta demanda.

3. Desarrollar una metodología que integre la predicción de la amplitud del peak de
ocupación de camas en modelos basados en aprendizaje de máquinas.

4. Validar la metodología propuesta mediante la comparación de sus predicciones con
datos históricos de ocupación de camas pediátricas.

5. Comparar resultados de la estimación de ocupación de camas del método de ensamble
y el método epidemiológico.
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0.5. Alcance y aportes del trabajo

Este trabajo se orienta a la aplicación de un enfoque de aprendizaje de máquinas basa-
do en modelos de ensamble penalizados, con el objetivo de predecir la ocupación de camas
pediátricas por causas respiratorias. A partir de un entrenamiento retrospectivo con datos
hospitalarios del sistema público chileno, se comparó el desempeño de esta estrategia con
un modelo epidemiológico tradicional tipo SIR, evaluando su capacidad para anticipar la
magnitud y el momento del peak de hospitalizaciones. Si bien se incluye una comparación
de desempeño, el objetivo central del estudio es aplicar y adaptar un enfoque moderno de
predicción al problema de presión asistencial estacional en pediatría.

El enfoque propuesto considera principios de replicabilidad, modularidad y flexibilidad,
lo que permite su adaptación a distintos niveles del sistema sanitario. El modelo puede
ser entrenado de forma específica para cada hospital, región o macrozona, aprovechan-
do particularidades locales y aumentando su aplicabilidad operativa. Esta capacidad de
personalización lo convierte en una herramienta versátil, capaz de integrarse en contextos
asistenciales diversos.

El flujo de trabajo desarrollado se organiza en tres módulos principales: (1) análisis y
tratamiento de los datos, (2) predicción de atenciones hospitalarias por causas respirato-
rias, y (3) estimación de la ocupación de camas pediátricas. Estas etapas se describen en
detalle en los Capítulos 2, 3 y 4, respectivamente. La Figura 2 resume gráficamente este
proceso metodológico, que estructura la organización del estudio.

Este trabajo busca contribuir a los procesos de toma de decisiones en gestión clínica y
planificación hospitalaria. La información generada por el modelo puede ser utilizada por
equipos directivos y operativos para anticipar escenarios críticos de demanda, optimizar la
asignación de recursos, programar refuerzos de personal y activar planes de contingencia en
momentos de alta presión asistencial. En particular, permite estimar de forma prospecti-
va la ocupación diaria de camas, apoyando una gestión más eficiente y basada en evidencia.

Por su diseño flexible, reproducible y ajustado a datos reales del sistema público, esta
herramienta tiene el potencial de convertirse en un insumo estratégico para fortalecer
la respuesta del sistema de salud ante eventos respiratorios estacionales, con foco en la
población pediátrica.
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Flujo general del trabajo propuesto

Figura 2: Flujo general del trabajo propuesto, desde los datos hasta la estimación de ocupación.
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1 Revisión Bibliográfica

1.1. Epidemiología de las enfermedades respiratorias en

Chile y el mundo

Las infecciones respiratorias agudas (IRA) continúan siendo una de las principales cau-
sas de carga de enfermedad y mortalidad a nivel global, especialmente en menores de cinco
años. Según estimaciones recientes, más del 80 % de las muertes por IRA ocurren en países
de ingresos bajos y medios, donde la atención médica oportuna no siempre es accesible
[1]. En términos comparativos, la carga global de las infecciones respiratorias agudas si-
gue mostrando una distribución desigual entre países, determinada en parte por factores
estructurales asociados al desarrollo socioeconómico [1].

El Índice Socio Demográfico (SDI, por sus siglas en inglés) ha sido identificado como
un determinante clave de esta heterogeneidad: regiones con bajo SDI concentran la mayor
mortalidad por neumonías y bronquiolitis, mientras que en regiones de alto SDI la carga
se expresa principalmente en términos de alta incidencia de cuadros leves, con saturación
recurrente de los servicios de urgencia pediátrica [1]. Esta desigualdad en la carga y en la
capacidad de respuesta sanitaria fue especialmente evidente durante y después de la pan-
demia por COVID-19, cuando los sistemas de salud enfrentaron cambios abruptos en la
demanda, producto del aumento de consultas respiratorias en grupos previamente menos
expuestos, como los menores de cinco años [1, 2].

Los virus respiratorios más relevantes a nivel global incluyen el virus respiratorio sinci-
cial (VRS), el virus influenza y el adenovirus. Estos presentan una distribución estacional
y geográfica heterogénea. Se estima que el VRS por sí solo provoca más de 33 millones de
episodios anuales en niños, resultando en aproximadamente 3 millones de hospitalizaciones
y entre 60.000 a 199.000 muertes, la mayoría en países de ingresos bajos [1].

En Chile, los estudios de vigilancia han demostrado que las IRA representan históri-
camente una causa predominante de consulta y hospitalización pediátrica, con tasas de
incidencia marcadamente superiores en el grupo etario de 0 a 14 años [3]. Entre los años
2017 y 2022, se observa una estacionalidad clara, con peaks de hospitalización y atención
de urgencia entre los meses de mayo y agosto [4]. Dicho patrón estacional se repite de for-
ma consistente año a año, lo que permite identificar ventanas críticas de mayor demanda
asistencial.
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Una comparación entre la atención ambulatoria y hospitalaria por causa muestra que
las enfermedades del sistema respiratorio tienen un peso relativo mucho mayor en las hospi-
talizaciones, reflejando su presentación típicamente estacional y su mayor gravedad clínica.

Esta diferencia refuerza su rol prioritario en la planificación sanitaria (Figuras 1.1
y 1.2). La tensión en la red hospitalaria generada por las IRA y sus peaks anuales re-
currentes llaman a implementar estrategias de refuerzo como la Campaña de Invierno y
la reconversión de camas pediátricas. A nivel estructural, estos eventos revelan una alta
dependencia de la experiencia histórica y de decisiones reactivas, más que de sistemas
predictivos robustos.

Figura 1.1: Porcentaje de atenciones de ur-
gencia ambulatoria por tipo de causa. Pe-
riodo 2015–2023.

Figura 1.2: Porcentaje de atenciones de ur-
gencia hospitalaria por tipo de causa. Pe-
riodo 2015–2023.

Los análisis realizados por Henríquez (2018, 2020) indican que el sistema de salud chi-
leno ha dependido en gran medida de la experiencia histórica para planificar respuestas
sanitarias ante estos peaks, incluyendo la activación de la Campaña de Invierno y la re-
conversión de camas [4, 5]. Sin embargo, esta planificación no siempre ha contado con
herramientas de predicción robustas, lo que limita su eficacia frente a años con mayor
variabilidad en la intensidad o inicio de la temporada respiratoria [5].

En los años post-pandemia, especialmente 2022 y 2023, se ha reportado un aumento
abrupto en la incidencia de consultas por causas respiratorias, reflejando cambios en la
susceptibilidad poblacional tras la suspensión de medidas no farmacológicas. Este fenó-
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meno ha sido descrito como un “rebote inmunológico”, con aumento de casos de VRS en
lactantes pequeños no expuestos previamente durante los años de pandemia [2].

A nivel nacional, los datos del MINSAL también indican un incremento en la tasa de
consultas médicas respiratorias (TCM) por 100.000 habitantes en población infantil en
estos últimos dos años, superando los valores de referencia prepandémicos y tensionando
significativamente la red asistencial [3]. Además, la TCM por 100.000 habitantes en el gru-
po infantil (0–14 años) es consistentemente superior a la de adultos y personas mayores,
con un aumento particularmente marcado en los años 2022 y 2023 (Figura 1.3).

Figura 1.3: Tasa de consultas médicas respiratorias (TCM) por 100.000 habitantes, según
grupo etario y año. Chile, 2017–2023.

1.1.1. Estacionalidad y variabilidad interanual

La estacionalidad de las hospitalizaciones pediátricas por IRA muestra aumentos soste-
nidos durante los meses de otoño e invierno en Chile, con una concentración habitual entre
mayo y agosto. Este patrón, observado de forma persistente en los últimos años, refleja un
comportamiento esperado de circulación viral. Sin embargo, la fecha exacta de inicio, el
momento del peak, y la duración de la temporada pueden variar significativamente entre
un año y otro, afectando la planificación sanitaria basada en datos históricos, como se
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observa en la Figura 1.4.

Figura 1.4: Total de atenciones de urgencia hospitalaria por causas respiratorias, agregadas
por semana epidemiológica (SE) a nivel nacional, entre 2017 y 2023.

Esta variabilidad interanual ha sido ampliamente documentada en la literatura inter-
nacional. Un estudio global sobre la estacionalidad del VRS mostró que, aunque existen
patrones generales consistentes por hemisferio, las fechas de inicio y término pueden des-
plazarse hasta en un mes entre temporadas consecutivas. Además, las regiones tropicales
o ecuatoriales presentan temporadas más prolongadas o múltiples ondas epidémicas a lo
largo del año, con patrones difíciles de anticipar sin vigilancia activa [6].

Factores como la temperatura ambiente, la humedad relativa y los niveles de contami-
nación han demostrado tener correlaciones significativas con la incidencia de IRA, aunque
con desfases temporales. Por ejemplo, Henríquez (2020) reporta correlaciones positivas
entre concentraciones de material particulado fino y aumentos en hospitalizaciones pediá-
tricas por causas respiratorias en Santiago, con desfases de una a dos semanas [5]. Sin
embargo, dichas variables no siempre están disponibles en tiempo real ni integradas a los
sistemas de predicción operacional del sistema de salud.

Asimismo, eventos como la pandemia por COVID-19 han demostrado cómo medidas
no farmacológicas pueden alterar completamente los patrones estacionales establecidos.
En años posteriores al confinamiento, se observaron “rebotes inmunológicos” con reemer-
gencia de VRS fuera de la ventana estacional tradicional y en grupos etarios que no habían
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estado previamente expuestos [7].

Para complementar este análisis, se evaluó la similitud interanual en los patrones de
atención respiratoria mediante una matriz de correlación de Pearson construida a partir de
las series mensuales entre 2015 y 2023. Como se observa en la Figura 1.5, los años previos
a la pandemia (2015–2019) presentan alta coherencia entre sí (r > 0,85), lo que respalda la
existencia de un patrón estacional estable y repetitivo. En contraste, el año 2020 muestra
una correlación negativa significativa respecto a todos los demás años, resultado de la
interrupción generada por las medidas sanitarias implementadas durante la pandemia.
Posteriormente, los años 2022 y 2023 evidencian una recuperación parcial del patrón,
aunque con menor consistencia respecto al período pre-pandémico.

Figura 1.5: Matriz de correlación entre años (2015–2023) basada en las atenciones respira-
torias mensuales pediátricas. Se observa alta coherencia entre años previos a la pandemia
y una disrupción marcada en 2020. Años post-pandémicos (2022–2023) muestran señales
de recuperación del patrón estacional.

Frente a esta incertidumbre, varios estudios han explorado el uso de modelos predic-
tivos para anticipar la magnitud y el momento del peak respiratorio. En particular, los
enfoques basados en series temporales y aprendizaje automático han demostrado ser útiles
para capturar patrones no lineales y detectar variaciones anómalas, especialmente en sis-
temas con buena disponibilidad de datos históricos [8]. Sin embargo, la mayoría de estos
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estudios han sido implementados en contextos internacionales y escasamente adaptados a
poblaciones pediátricas en países de ingresos medios como Chile.

1.1.2. Gestión de camas y planificación hospitalaria

La planificación hospitalaria en sistemas públicos exige anticipar de forma eficiente la
demanda asistencial, especialmente para evitar la saturación de camas pediátricas durante
los meses de invierno. En Chile, esta planificación ha estado tradicionalmente basada en
la experiencia acumulada de años previos, lo que limita su capacidad de anticipación ante
eventos con variabilidad interanual. Un ejemplo concreto de ello es la Campaña de In-
vierno, la cual se activa en función de tendencias históricas sin el respaldo de herramientas
predictivas robustas que permitan anticipar la magnitud o el momento preciso del peak de
hospitalizaciones por causas respiratorias [9].

La Unidad de Gestión Centralizada de Camas (UGCC) permite coordinar en tiempo
real la asignación de camas a nivel nacional; sin embargo, la planificación efectiva de re-
fuerzos de personal, reconversión de camas quirúrgicas u otras medidas de contingencia
requiere semanas de anticipación. De acuerdo con estimaciones del Hospital Luis Calvo
Mackenna (HLCM), un retraso de una semana en la activación de recursos puede tradu-
cirse en atención subóptima, hospitalización en condiciones inadecuadas (por ejemplo, en
camillas de urgencia), y riesgo elevado para la seguridad del paciente [2].

En este contexto, contar con predicciones confiables de ocupación de camas se vuelve
crítico. Estudios internacionales coinciden en que la gestión proactiva de camas, apoyada
por modelos predictivos, permite no solo mejorar la asignación de recursos físicos y huma-
nos, sino también establecer políticas de mitigación, como el adelantamiento de vacaciones
escolares, redistribución de pacientes entre hospitales o reconversión anticipada de camas
quirúrgicas [10, 11, 12].

Además, las revisiones sistemáticas han demostrado que una planificación efectiva debe
considerar múltiples dimensiones: desde el diseño arquitectónico del hospital, la disponibi-
lidad de recursos humanos, hasta la eficiencia de sistemas de información y logística hos-
pitalaria [11]. Esta complejidad subraya la necesidad de enfoques integrales que aborden
simultáneamente la incertidumbre estacional, la gestión táctica-operativa y las limitaciones
estructurales del sistema de salud.
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1.2. Modelos y métodos en predicción de demanda hos-

pitalaria

La necesidad de anticipar de forma precisa la demanda hospitalaria ha impulsado el
desarrollo de una variedad de modelos predictivos, desde enfoques clásicos basados en epi-
demiología hasta técnicas recientes de inteligencia artificial. En el contexto de las IRA,
esta tarea se vuelve especialmente relevante debido a la marcada estacionalidad y a la alta
variabilidad interanual de los ingresos hospitalarios pediátricos, como se ha mencionado
previamente [8].

Numerosos estudios han identificado correlaciones entre variables ambientales, como
temperatura, humedad y contaminación del aire, y el aumento en las consultas por IRA,
proponiendo su integración en modelos de predicción con desfases temporales aprovecha-
bles [13]. Asimismo, se ha explorado el uso de datos no tradicionales como las búsquedas
en línea para capturar tendencias emergentes [14].

En cuanto a agentes etiológicos, se reconoce que virus como el VRS, parainfluenza,
influenza y SARS-CoV-2 están entre los principales responsables de hospitalizaciones pe-
diátricas en Chile, con un comportamiento estacional marcado y asociado a cambios en la
circulación viral y factores climáticos [1, 15].

1.2.1. Modelos epidemiológicos tradicionales

Los modelos compartimentales como SIR, SEIR, SIRS o SEIRS, herramientas centrales
para comprender y predecir la dinámica de enfermedades infecciosas, han sido ampliamen-
te utilizados para simular la propagación de enfermedades infecciosas en poblaciones. Su
principal fortaleza es la representación matemática de la dinámica de transmisión, con
parámetros como la tasa de contacto, el periodo infeccioso y la inmunidad poblacional
[16, 17].

Durante la pandemia por COVID-19, estos modelos se adaptaron para estimar curvas
epidémicas y necesidades de hospitalización, particularmente en camas UCI. Sin embargo,
su aplicabilidad en contextos pediátricos estacionales es más limitada. En Chile, se han
desarrollado versiones extendidas para simular carga hospitalaria durante campañas inver-
nales, aunque con enfoque poblacional agregado y sin calibración específica para unidades
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pediátricas [18].

Una crítica común a estos modelos es su incapacidad para estimar directamente la ocu-
pación hospitalaria diaria, así como su dificultad para incorporar efectos exógenos como la
movilidad, estacionalidad ambiental o políticas sanitarias. Además, suponen condiciones
estructurales rígidas, como poblaciones homogéneas y tasas de transmisión constantes, que
no siempre se ajustan a la realidad operativa de los servicios de salud [19].

1.2.2. Modelos de series temporales y aprendizaje automático

Frente a las limitaciones de los modelos epidemiológicos, han ganado protagonismo los
enfoques basados en series temporales y aprendizaje automático. Estos modelos se centran
directamente en la predicción de variables como ocupación hospitalaria o ingresos diarios,
permitiendo incorporar no linealidades, estacionalidad y múltiples variables externas [20].

Modelos como ARIMA, SARIMA y sus variantes con regresores exógenos (ARIMAX,
SARIMAX) han sido ampliamente utilizados en este campo por su simplicidad e inter-
pretabilidad, aunque muestran limitaciones en escenarios no estacionarios o con cambios
abruptos [21].

Para abordar estos desafíos, se ha propuesto el uso de modelos de aprendizaje auto-
mático y profundo, como Random Forest, Gradient Boosting, redes neuronales artificiales
(ANN) y redes recurrentes (RNN, LSTM), que han demostrado mejor desempeño en con-
textos hospitalarios complejos. Por ejemplo, estudios como los de Zhao et al. (2022) y
Saad et al. (2023) evidencian que los modelos LSTM superan a los modelos ARIMA en
ventanas de predicción de 7 a 30 días [13, 21].

Una revisión sistemática reciente reportó que los enfoques más utilizados en predicción
de camas hospitalarias incluyen series temporales (26 %) y modelos lineales generalizados
(25 %), seguidos por técnicas avanzadas de machine learning (14 %), como los modelos de
ensamble y redes neuronales profundas. Sin embargo, persisten desafíos en cuanto a su
interpretabilidad clínica y validación externa [22].
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1.2.3. Métodos de ensamble en salud

Los métodos de ensamble combinan múltiples modelos base con el objetivo de capturar
distintos patrones del fenómeno y reducir el riesgo de sobreajuste. Han sido aplicados con
éxito para la predicción de flujos de pacientes y ocupación de camas en urgencia, mos-
trando resultados superiores en precisión y estabilidad, especialmente en entornos con alta
incertidumbre epidemiológica [23, 24, 25].

Entre sus principales ventajas se incluyen la robustez ante variaciones interanuales y la
capacidad de generalización. Sin embargo, presentan barreras importantes para su adop-
ción práctica, como la necesidad de recursos computacionales, dificultad de interpretación
por parte del personal clínico, y escasa documentación sobre su implementación real en
servicios de salud pública [13, 26].

A pesar de su potencial, los métodos de ensamble aún presentan barreras para su adop-
ción práctica en salud pública, principalmente por su complejidad computacional y por la
falta de marcos estandarizados para su interpretación clínica. Además, la mayoría de los
trabajos se centran en adultos y en enfermedades de curso agudo sin marcada estaciona-
lidad, lo que deja un vacío relevante en la predicción de hospitalizaciones pediátricas por
causas respiratorias, donde la carga asistencial es alta y el comportamiento epidemiológico
varía año a año.

1.2.4. Modelado predictivo en salud en el contexto chileno

En Chile, el desarrollo de modelos predictivos aplicados a la gestión hospitalaria ha
ganado relevancia durante la última década, especialmente tras los desafíos sanitarios im-
puestos por la pandemia de COVID-19. Estos esfuerzos han incluido tanto aplicaciones de
modelos epidemiológicos tradicionales como el uso de técnicas modernas de aprendizaje
automático, particularmente en contextos pediátricos y de urgencia.

En el contexto de la pandemia, Badal y Goic (2021) desarrollaron un modelo de riesgo
hospitalario por COVID-19 en Chile utilizando técnicas de gradient boosting (XGBoost),
lo que permitió priorizar estrategias de vacunación en función del riesgo estimado de hos-
pitalización. Este modelo se entrenó con datos clínicos reales y tuvo aplicación directa en
el diseño de políticas públicas durante la emergencia sanitaria [25].

16



Complementariamente, el trabajo de Barros, Weber y Reveco (2021) implementó mode-
los de pronóstico avanzado y simulación estocástica para la gestión de camas hospitalarias
en unidades de emergencia, mostrando cómo la predicción operativa puede optimizar la
toma de decisiones en condiciones de incertidumbre y alta variabilidad de la demanda [15].

Desde una perspectiva más conceptual, los aportes de Henríquez [4, 5] han sido funda-
mentales en la caracterización de la estacionalidad de las infecciones respiratorias agudas
en Chile, y en el análisis de su impacto sobre el sistema hospitalario pediátrico. Sus es-
tudios han explorado tanto modelos SIR calibrados con datos nacionales como enfoques
de vigilancia epidemiológica que resaltan la importancia de incorporar factores sociales,
ambientales y de infraestructura en el modelado predictivo.

Adicionalmente, en el marco del proyecto FONDEF ID23I10423, se ha avanzado en
el diseño e implementación de plataformas de pronóstico hospitalario integradas con re-
portería automatizada, desarrolladas por el CMM-SD de la Universidad de Chile. Estas
plataformas utilizan modelos autorregresivos entrenados con datos históricos de urgencia,
temperatura y circulación viral para anticipar ocupación de camas respiratorias en pobla-
ción pediátrica [2].

Uno de los trabajos realizados en el marco del proyecto con foco pediátrico es el de
Bravo (2024), quien propone una arquitectura híbrida que combina un modelo epidemio-
lógico con una red neuronal recurrente (RNN) tipo LSTM para predecir el uso máximo
de camas por causas respiratorias en el Hospital HLCM. Su estudio muestra que el enfo-
que de ensamble supera a los modelos individuales tanto en precisión como en capacidad
de generalización, destacando el valor de integrar metodologías diversas para mejorar la
anticipación de escenarios críticos en salud infantil [27].

Otro aporte relevante es el de Contreras (2018), quien desarrolló un modelo predictivo
de la demanda de atención de urgencia por enfermedades respiratorias en Chile utilizando
búsquedas de Google como variable exógena. Empleando modelos ARIMA y ARIMAX, lo-
gró una mejora sustancial en el error de predicción al incorporar términos correlacionados
obtenidos mediante Google Correlate. Este trabajo destaca por su innovación metodológi-
ca al integrar herramientas de búsqueda en línea con modelos clásicos de series de tiempo,
mostrando una forma alternativa de anticipar episodios de sobredemanda en los Servicios
de Urgencia [28].
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Finalmente, se han desarrollado aplicaciones educativas y teóricas del modelo SIR en
el contexto chileno, como el trabajo de Caro (2021), que adapta el modelo a los primeros
meses de la pandemia por SARS-CoV-2. Aunque estas aproximaciones no buscan una im-
plementación operativa, sí cumplen un rol formativo relevante para el entendimiento de la
dinámica epidémica en entornos locales [29].

En conjunto, estos desarrollos evidencian un creciente interés y capacidad técnica en el
país para aplicar ciencia de datos y modelamiento en la planificación sanitaria. No obstante,
persisten desafíos en torno a la disponibilidad de datos desagregados, la validación externa
de los modelos y su integración efectiva en los procesos de toma de decisiones clínicas e
institucionales.

1.3. Brechas actuales y justificación del estudio

Del análisis del estado del arte se identifican múltiples brechas relevantes en el mode-
lado predictivo de la demanda hospitalaria pediátrica por causas respiratorias. En primer
lugar, los modelos epidemiológicos tradicionales como el SIR y sus variantes no están
diseñados para estimar directamente la ocupación diaria de camas, especialmente consi-
derando las dinámicas específicas de los servicios pediátricos. Estos modelos, si bien útiles
para simular la propagación de agentes infecciosos, no capturan adecuadamente los flujos
operacionales hospitalarios como ingresos, egresos y duración de estancia.

Por otra parte, si bien los modelos de series temporales y de aprendizaje automático
han mostrado buen desempeño predictivo en distintos contextos clínicos, su aplicación a
patologías respiratorias pediátricas en Chile ha sido limitada y, en general, carece de vali-
dación externa rigurosa. Además, estos modelos suelen centrarse en predicciones agregadas
de ingresos o consultas, sin estimar de forma directa la ocupación diaria de camas, lo que
restringe su aplicabilidad operativa.

Un desafío adicional es la escasez de datos desagregados y actualizados sobre egresos
hospitalarios, lo que impide modelar adecuadamente el flujo completo de pacientes. Es-
ta limitación afecta particularmente a hospitales públicos de alta complejidad, donde la
toma de decisiones requiere herramientas confiables que anticipen de forma granular los
escenarios de sobreocupación.

Frente a este panorama, se justifica el desarrollo de un enfoque que combine técnicas
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modernas de predicción con una lógica explícita de flujos hospitalarios. Este enfoque debe
ajustarse a la disponibilidad real de datos en el sistema de salud chileno, ser aplicable a
contextos pediátricos de alta variabilidad estacional y ofrecer resultados interpretables y
accionables para la planificación asistencial.

1.4. Solución propuesta

Este trabajo propone una solución basada en un modelo de ensamble autorregresivo
diseñado para predecir, con anticipación, la ocupación diaria de camas pediátricas por
causas respiratorias. La propuesta integra tres componentes principales:

1. Predicción de ingresos hospitalarios: estimación multivariada y paralela de in-
gresos diarios mediante un conjunto de modelos base heterogéneos (p. ej., Random
Forest, LSTM, XGBoost), integrados bajo un esquema de ensamble poco denso.

2. Estimación de egresos hospitalarios: cálculo probabilístico del número de egre-
sos diarios a partir de la convolución de los ingresos predichos y la distribución
empírica de duración de estancia, ajustada por funciones de densidad.

3. Simulación de ocupación diaria: modelado del estado diario de ocupación como
el resultado del balance dinámico entre ingresos y egresos, permitiendo proyectar
escenarios en ausencia de datos de egresos en tiempo real.

1.4.1. Enfoque integrador de modelamiento

El enfoque integrador combina las capacidades de generalización de los métodos de
aprendizaje automático con la lógica determinística de los modelos de flujo hospitalario.
La elección de un esquema de ensamble poco denso, inspirado en la formulación propuesta
por Benítez-Peña et al. (2021) [23], permite aprovechar la complementariedad entre mo-
delos base, penalizando aquellos con bajo desempeño individual y priorizando la robustez
predictiva global.

Esta arquitectura no sólo mejora el rendimiento ante escenarios de alta variabilidad
interanual, sino que también facilita la adaptación a distintos contextos institucionales,
ajustándose a las características propias de cada hospital.
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1.4.2. Aplicación a hospitales pediátricos en Chile

Como caso de aplicación, la metodología se entrena y valida con datos del HLCM, uni-
dad pediátrica de referencia nacional. Se utilizan series históricas de consultas de urgencia
y hospitalizaciones por causas respiratorias reportadas por el MINSAL, así como registros
institucionales de días de permanencia.

El HLCM representa un entorno clínico de alta complejidad con una fuerte demanda, lo
que lo convierte en un escenario óptimo para validar la capacidad del modelo en contextos
reales de planificación crítica. La solución propuesta busca ser replicable y escalable a otros
establecimientos pediátricos del país, contribuyendo a la toma de decisiones anticipadas
en periodos de alta presión asistencial.
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2 Datos y Métodos

2.1. Supuestos y formulación general

El objetivo de este estudio es estimar la ocupación diaria de camas hospitalarias pe-
diátricas durante los periodos de mayor presión asistencial, particularmente en torno al
peak estacional de enfermedades respiratorias. Esta investigación se enmarca en el proyec-
to FONDEF ID23I10423, en el cual se han desarrollado un sistema de alerta temprana y
un modelo epidemiológico compartimental (SIR), ambos basados en una misma fuente de
datos: los registros abiertos de atenciones de urgencia del Departamento de Estadísticas e
Información en Salud (DEIS).

El uso de esta fuente abierta, trazable y de cobertura nacional permite estandarizar la
base metodológica de comparación entre distintos enfoques predictivos. En este contexto,
se proponen y comparan dos estrategias para estimar la ocupación hospitalaria: (1) un
modelo epidemiológico compartimental (SIR) previamente implementado, y (2) un mode-
lo predictivo basado en aprendizaje automático, desarrollado en este trabajo.

Ambos modelos utilizan como insumo una serie temporal de atenciones de urgencia
por causas respiratorias, desagregadas por tipo de atención (ambulatoria u hospitalaria),
establecimiento y grupo etario. Bajo el supuesto de que una atención hospitalaria por
causa respiratoria puede actuar como proxy de un ingreso clínico, se plantea que la ocu-
pación diaria puede modelarse como el resultado neto entre ingresos estimados y egresos
simulados. La serie resultante representa una medida operativa de carga asistencial, cuya
magnitud máxima se interpreta como la amplitud del peak estacional.

Este planteamiento permite mantener consistencia metodológica con el modelo SIR del
sistema de alerta, asegurando así la comparabilidad entre ambos enfoques y estableciendo
condiciones homogéneas para su validación.

En consecuencia, se utiliza el concepto de ocupación hospitalaria diaria como proxy
directo de la amplitud del peak. A lo largo del documento, los términos “ocupación” y “am-
plitud” se emplean de manera intercambiable, aludiendo al mismo fenómeno desde una
perspectiva operativa.

Bajo este marco, el estudio se categoriza como una investigación metodológica de de-
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sarrollo y validación comparativa de modelos predictivos, utilizando datos observacionales
retrospectivos.

2.2. Diseño del estudio

El estudio se estructura como un análisis longitudinal retrospectivo sobre datos ob-
servacionales anonimizados, con el objetivo de estimar la ocupación hospitalaria diaria
pediátrica por causas respiratorias agudas.

La metodología se desarrolla en dos etapas complementarias. En la primera, se entre-
na un modelo supervisado para realizar predicción autorregresiva del número diario de
hospitalizaciones por causas respiratorias, a partir de registros históricos del DEIS. En la
segunda, la serie estimada de ingresos se utiliza como insumo para proyectar la ocupación
diaria de camas, aplicando una distribución empírica de estancias hospitalarias que per-
mite simular los egresos.

Para esta segunda etapa se utilizó una base de datos anonimizada correspondiente al
año 2023, proveniente del Hospital Dr. Luis Calvo Mackenna (HLCM), centro participante
del proyecto FONDEF. Esta base permitió estimar empíricamente la distribución de días
de estancia hospitalaria, insumo clave para la simulación de egresos.

2.3. Fuentes de datos

La principal fuente corresponde a los registros abiertos del Departamento de Estadísti-
cas e Información en Salud (DEIS) del Ministerio de Salud de Chile. Esta base proporciona
información diaria anonimizada sobre atenciones de urgencia en establecimientos públicos,
incluyendo variables como causa clínica, edad, tipo de atención y ubicación geográfica. El
periodo cubierto va desde 2015 a 2023. Para este estudio se seleccionaron únicamente las
atenciones por causas respiratorias en menores de 15 años, excluyéndose registros incom-
pletos.

Complementariamente, se utilizó una base del Hospital Dr. Luis Calvo Mackenna
(HLCM) correspondiente al año 2023, que contiene información anonimizada de ingre-
sos y egresos hospitalarios por causas respiratorias pediátricas. Esta base permitió ajustar
una función exponencial, validada mediante los criterios de información de Akaike (AIC)
y de Bayes (BIC), así como mediante la prueba de Kolmogorov–Smirnov (KS).
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Las variables principales utilizadas se detallan en el Anexo A.1.

2.4. Preprocesamiento de datos

El preprocesamiento consistió en la limpieza, depuración y estructuración de registros
diarios de atenciones de urgencia por causas respiratorias en menores de 15 años. Se
eliminaron duplicados, registros incompletos o con fechas inconsistentes, y se restringió el
análisis a establecimientos con series temporales completas por año. Las variables clave
fueron transformadas para incorporar rezagos, estacionalidad y componentes calendáricos.
La imputación de datos faltantes se realizó mediante IterativeImputer de scikit-learn,
aplicando criterios estrictos de vecindad temporal de siete días consecutivos para preservar
la coherencia longitudinal.

2.4.1. Control de calidad y completitud

Se eliminaron registros con fechas inconsistentes, duplicados o valores faltantes. Se de-
finió un subconjunto de hospitales con series temporales completas por año. La imputación
de valores se realizó mediante IterativeImputer de sklearn, sólo en contextos con ve-
cindad temporal completa de 7 días.

En la Tabla 2.1 se presenta el listado de establecimientos que cumplieron con el criterio
de completitud diaria para el período 2015–2023, lo que permitió su inclusión en los análisis
longitudinales realizados.

Tabla 2.1: Listado de establecimientos con series temporales completas en el periodo 2015–
2023.
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2.4.2. Caracterización y transformación de variables

Se excluyeron registros duplicados y sin causa identificada. El análisis se restringió
a menores de 15 años. Se generaron atributos derivados como rezagos, estacionalidad,
feriados, calendario y tendencia, útiles tanto para modelos autorregresivos como para
contrastar con estructuras tipo SIR.

2.4.3. Construcción de series temporales

Se construyó una matriz multivariada diaria por hospital y macrozona que represen-
ta ingresos hospitalarios por causas respiratorias. Esta matriz sirve como base para las
ventanas de entrenamiento (Capítulo 3) y para la simulación de ocupación de camas (Ca-
pítulo 4).

2.4.4. Procesamiento y selección de variables

La unidad de análisis es la atención diaria por causa respiratoria, desagregada por
establecimiento, región, tipo de atención y grupo etario. Para la etapa de validación se
incorporó un análisis contrafactual utilizando los datos de egresos del HLCM.

Tabla 2.2: Criterios de inclusión y exclusión utilizados para la consolidación del conjunto
de datos de urgencia respiratoria pediátrica.

La selección y transformación de variables se basó en criterios clínicos, administrativos,
temporales y demográficos, priorizando su relevancia predictiva y disponibilidad histórica.

24



Tabla 2.3: Criterios de filtrado, transformación y segmentación de variables para la cons-
trucción de las series temporales pediátricas.
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Diagrama de construcción del conjunto de datos respiratorios

Figura 2.1: Diagrama de preprocesamiento aplicado a los registros del DEIS. Se muestran los pasos de filtrado, transformación
e imputación que dieron origen al conjunto final de datos respiratorios pediátricos entre 2015 y 2023.
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2.5. Variables para el modelamiento

Definiciones operativas

Con el fin de evitar ambigüedades en la interpretación de los términos utilizados a
lo largo del documento, se presentan a continuación las definiciones operativas de los
principales conceptos clínicos y estadísticos involucrados en este estudio:

• Incidencia de atenciones de urgencia: número de nuevos ingresos a urgencia
registrados en un periodo determinado, sea ambulatorio u hospitalario, expresado
como conteo diario, semanal o anual. En este trabajo se utiliza como sinónimo de
“nuevos hospitalizados por día”.

• Atención de urgencia: conjunto total de consultas o procedimientos realizados en
un establecimiento ingresados por urgencia, incluyendo tanto ingresos ambulatorios
(ej. urgencias, consultas externas) y hospitalarios. Este término es más amplio que
“hospitalizaciones”.

• Hospitalización: proceso mediante el cual un paciente es admitido a una unidad
clínica con indicación de permanencia, usualmente en cama hospitalaria, también
puede ser llamado atención de urgencia hospitalaria.

• Estancia hospitalaria: duración (en días) de la permanencia de un paciente en el
hospital desde su ingreso hasta su egreso.

• Egresos hospitalarios: número de pacientes que finalizan su hospitalización (ya
sea por alta médica, traslado o fallecimiento) en un periodo determinado. En este
trabajo, los egresos se modelan como una función probabilística en el tiempo.

• Ocupación de camas: cantidad de camas efectivamente utilizadas en un día de-
terminado, calculada acumulando los ingresos y descontando egresos según una dis-
tribución de estancia esperada.

Proceso de modelamiento

1. Predicción autorregresiva de atenciones hospitalarias respiratorias.
A partir de series temporales históricas de atenciones ambulatorias y hospitalarias, se
construyen ventanas móviles de tamaño ℓ que permiten generar vectores de entrada
para modelos supervisados. Las variables independientes corresponden a observacio-
nes de días previos, mientras que la variable dependiente es la atención hospitalaria
observada en el día t. Este dataset es enriquecido mediante transformaciones de las
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series (diferencias, log-transformaciones, etc.) con el objetivo de capturar dinámicas
no lineales y patrones estacionales.

• Variables independientes (predictoras): secuencias temporales de atencio-
nes ambulatorias (At−i) y hospitalarias (Ht−i) para i = 1, . . . , ℓ.

• Variable dependiente: atención hospitalaria diaria observada (Ht).

• Transformaciones y enriquecimiento: se aplican diferencias de primer y
segundo orden, log-transformaciones y variables derivadas temporales (día del
año, feriados, rezagos cruzados).

2. Estimación de ocupación de camas hospitalarias.
Utilizando la serie estimada de ingresos diarios obtenida en la capa anterior, se
proyecta la ocupación diaria de camas mediante un modelo de flujos que considera
la duración esperada de las estancias hospitalarias. Esta duración se modela con una
función de densidad ajustada empíricamente, permitiendo simular egresos diarios y
estimar la carga acumulada.

• Variable principal (dependiente): estimación diaria de ocupación de camas
pediátricas por causas respiratorias.

• Variables intermedias:

– Ingresos de atenciones de urgencia diarias (predichos con el ensemble de
forma autorregresiva).

– Egresos simulados mediante función de densidad (exponencial).

– Ocupación acumulada estimada.

• Variables de ajuste: parámetros de la distribución de egreso, duración media
estimada, y curva de supervivencia.

2.6. Herramientas computacionales

El análisis fue realizado en Python 3.11. Se utilizaron las siguientes bibliotecas:

• pandas, numpy, scikit-learn, scipy

• plotly, matplotlib, statsmodels, joblib
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2.7. Enfoque metodológico: regresión supervisada y mé-

todos de ensemble

El problema de estimar la ocupación diaria de camas hospitalarias se aborda como
una tarea de regresión temporal supervisada, en la que se busca predecir variables
continuas (atenciones e ingresos diarios) a partir de ventanas móviles de observaciones
pasadas. Dado el carácter cuantitativo, secuencial y altamente estacional de los datos, se
descartan enfoques no supervisados como clustering, que no tienen objetivos predictivos
explícitos.

Taxonomía de métodos de ensemble aplicados a regresión

• Bagging : combina modelos entrenados sobre subconjuntos bootstrap para reducir la
varianza (por ejemplo, Random Forest).

• Boosting : entrena modelos en secuencia, corrigiendo errores progresivos (por ejem-
plo, Gradient Boosting).

• Stacking: utiliza un meta-modelo para combinar las predicciones de múltiples re-
gresores base.

• Sparse ensemble (modelo propuesto): aplica penalización ℓ1 para seleccionar au-
tomáticamente un subconjunto reducido de modelos con mejor desempeño.

En este estudio se adopta un enfoque basado en métodos de ensemble, dada su ca-
pacidad para mejorar el desempeño predictivo mediante la combinación de modelos base
con distintos sesgos inductivos. En general, un ensemble se define como una combinación
convexa de modelos base:

ŷ =
m∑
j=1

αj f̂j(x), con
∑
j

αj = 1, αj ≥ 0

Donde f̂j(x) es la predicción del modelo base j y αj su peso relativo en la combinación.
Esta estrategia permite aprovechar la diversidad de regresores base, permitiendo que sean
lineales, no lineales y/o probabilísticos.

Esto permite combinar regresores heterogéneos (lineales, no lineales y probabilísticos)
en un esquema compacto, favoreciendo la capacidad de generalización en contextos de alta
variabilidad estacional.
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2.8. Comité de Ética

Los datos utilizados en este estudio provienen de fuentes públicas y anonimizadas,
específicamente del Departamento de Estadísticas e Información en Salud (DEIS) del Mi-
nisterio de Salud de Chile. Estas bases están disponibles sin registro previo y no requieren
contacto ni intervención con los sujetos.

La base adicional del Hospital Dr. Luis Calvo Mackenna (2023), también anonimizada,
fue entregada en conformidad con los mismos principios éticos y normativos, garantizando
la imposibilidad de identificación individual.

En consecuencia, este estudio se clasifica como análisis secundario retrospectivo, sin
riesgo para las personas ni necesidad de consentimiento informado, de acuerdo con la legis-
lación chilena vigente (Decreto 725, Ley 20.584, Ley 19.628) y directrices internacionales
(Declaración de Helsinki, pautas CIOMS/OMS). No se otorgaron incentivos económicos y
se declara ausencia de conflictos de interés.
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3 Predicción de incidencia hospitalaria
Este capítulo describe el desarrollo del módulo predictivo de atenciones de urgencia

hospitalarias pediátricas por causas respiratorias. Dado que no se cuenta con datos ob-
servables directos sobre la ocupación de camas, se propone como estrategia intermedia
estimar los ingresos diarios mediante técnicas de ensemble y aprendizaje supervisado. Es-
tas predicciones se utilizarán como insumo principal para el módulo de estimación de
ocupación de camas, descrito en el Capítulo 4.

3.1. Formulación del problema

La predicción del número diario de atenciones de urgencia hospitalarios pediátricos
por causas respiratorias se plantea como un problema de regresión temporal supervisada,
donde la variable dependiente yt (o Ht) representa las atenciones del día t, y el vector de
predictores Xt se construye a partir de observaciones pasadas y atributos derivados.

3.2. Construcción del conjunto de datos

Los datos provienen del procesamiento detallado en el Capítulo 2, utilizando registros
diarios entre los años 2015 y 2023 correspondientes a hospitales con series completas y
una carga sustantiva de causas respiratorias pediátricas. Se excluyeron valores atípicos y
registros incompletos. Contiene columnas temporales, geográficas y variables agregadas
por tipo de atención (pediátrica y adulta, ambulatoria y hospitalaria).

Antes de ser utilizadas en los modelos, las series temporales de hospitalizaciones pe-
diátricas fueron suavizadas mediante el filtro de Savitzky-Golay, por hospital y por año
base (2015, 2016, 2017, 2018, 2019, 2022), usando una ventana de 311 días y un polinomio
de orden 2. Este suavizado busca disminuir la variabilidad diaria local y capturar me-
jor la tendencia general. El resultado fue una nueva columna por variable suavizada (ej.
Pediatrico_hospitalario_suav).

Se construyeron dos versiones del conjunto: una cruda y otra suavizada. Para capturar
la riqueza de información de ambos enfoques, se optó por una versión combinada (crudos
+ suavizados), que se utilizó en el entrenamiento final del modelo.
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3.2.1. Construcción de la matriz de entrenamiento

Para entrenar los modelos, se construyó una matriz de características X por hospital,
en la que cada fila corresponde a una instancia de predicción futura. Esta matriz considera:

• Ventanas desfasadas de valores crudos y suavizados (t-n)

• Diferencias logarítmicas e incrementos

• Codificación del día de la semana (one-hot)

• Componentes estacionales del día del año (seno/coseno)

• Normalización por año base

• Características derivadas del histórico de peaks anuales por hospital (valor y fecha
del peak previo, distancia temporal al peak, tiempo desde inicio de subida)

3.3. Modelos base y esquema del ensemble

Se entrenó una colección diversa de modelos base de regresión:

• Modelos lineales penalizados: Ridge (descartado por bajo rendimiento), Lasso

• Redes neuronales multicapa: MLP (MLP_1h_relu, MLP_2h_tanh)

• Random forest : RandomForestRegressor

• Modelos de boosting : GradientBoosting, LGBMRegressor con objetivo de cuantiles

• Redes recurrentes: LSTM para secuencias temporales

• Otros: SVR, KNN, DecisionTreeRegressor

Cada modelo fue encapsulado en un Pipeline con estandarización previa, y algunos
fueron ajustados con PositiveShiftRegressor para evitar valores negativos.

3.4. Método de ensamblado

El ensamblado combina los modelos base mediante optimización cuadrática regulari-
zada, siguiendo a Benítez et al. (2021). La predicción combinada se expresa como:

ŷt =
∑
f∈F

αf ŷ
(f)
t , con

∑
αf = 1, αf ≥ 0
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La optimización busca minimizar la pérdida global penalizada:

mı́n
α∈S

{
L

(∑
f∈F

αff

)
+ λ

∑
f∈F

αfLf

}

donde λ ≥ 0 es un hiperparámetro de regularización, Lf la pérdida individual del modelo
f , y S el simplex unitario. Esto induce sparsity, favoreciendo combinaciones parsimoniosas
y estables. A continuación podemos ver el esquema de como se desarrolla el ensemble, desde
el conjunto de regresores seleccionados hasta la salida que es la predicción combinada.

Figura 3.1: Esquema del ensemble con penalización ℓ1: los modelos base se combinan
mediante optimización convexa regularizada, generando una predicción ponderada con
pesos aprendidos.

3.5. Esquema temporal y selección de hiperparámetros

Para el entrenamiento del ensemble de atenciones de urgencia pediátricas hospitalarias,
se optó por entrenar los modelos exclusivamente con datos previos al año 2020, excluyendo
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los años afectados por la pandemia de COVID-19, con el objetivo de preservar la estaciona-
lidad típica y permitir que el modelo capturara adecuadamente tanto el comportamiento
anual como la dinámica del peak respiratorio invernal. Esta decisión buscó favorecer la
estabilidad y generalización del modelo frente a patrones históricos representativos; con
este fin, se definió la siguiente partición temporal:

• Entrenamiento: 2015-2019

• Validación: 2022

• Testeo: 2023

Las etapas fueron:

• Tiempo 1 a T : construcción de X, y

• Tiempo 1 a T − d: entrenamiento de regresores base

• Tiempo T − d a T : ensamblado y selección de αλ

• Tiempo T + 1 a T + h: testeo con predicción final

A continuación, en la Figura 3.2 podemos ver cada una de las etapas representadas en
una línea de tiempo:

Figura 3.2: Resumen de etapas del pipeline de modelado con ensamblado penalizado.

La Tabla 3.1 detalla las fases del proceso de entrenamiento y evaluación del modelo en-
semble, con énfasis en la secuencia temporal y el propósito específico de cada etapa. Esta
estructura permite una organización clara de los pasos involucrados, desde la construcción
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del conjunto de datos hasta la validación y testeo final del modelo ensamblado, integrando
tanto el ajuste de los regresores base como la optimización de los pesos combinados.

Tabla 3.1: Etapas del modelo: entrenamiento, ensamblado y evaluación del modelo ensem-
ble.

3.6. Entrenamiento aplicado al Hospital de Niños Dr.

Luis Calvo Mackenna (HLCM)

Aunque el procedimiento de entrenamiento se replicó en múltiples hospitales, se selec-
cionó el HLCM como caso representativo. Este centro, además de formar parte del proyecto
en el cuál se encuentra enmarcado este trabajo, presenta un volumen representativo y con-
tinuo de hospitalizaciones pediátricas.

Se construyeron cinco combinaciones de matrices de entrenamiento, con diferentes lar-
gos de ventanas deslizantes o window_len (W) y con diferentes horizontes de predicción
u horizonte (H):

• W=7, H=7
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• W=14, H=7

• W=21, H=7

• W=21, H=14

• W=30, H=14

Cada modelo fue optimizado sobre una grilla de valores de λ ∈ [2−6, 29] y almacenado
en disco para su uso futuro.

3.7. Selección del mejor modelo

Del conjunto evaluado, se seleccionó la combinación W=21, H=14 por su mejor rendi-
miento en el conjunto de prueba del año 2023, priorizando:

• MAE y RMSE mínimos

• Captura del peak estacional (fecha y magnitud)

Los resultados de cada una de las combinaciones serán vistos en detalle en el Capítulo
5.

3.8. Predicción autorregresiva

Se desarrolló una función de predicción autorregresiva diaria de hospitalizaciones pe-
diátricas, usando exclusivamente el modelo ensemble hospitalario entrenado sobre datos
combinados crudos y suavizados. El procedimiento consiste en generar predicciones itera-
tivas hacia adelante, utilizando una ventana deslizante de tamaño fijo, que incorpora tanto
las observaciones originales como su versión suavizada mediante el filtro de Savitzky-Golay.

El uso conjunto de ambas representaciones permite capturar tanto las pendientes
abruptas asociadas a la subida del peak (información contenida en la serie cruda) como
su estructura de mediano plazo y localización temporal (aportada por la serie suavizada).
Esta combinación contribuye tanto a la mejora en la estimación de la magnitud del peak
como a una mejor anticipación de su ocurrencia, como se evidencia en la validación re-
trospectiva de años anteriores.

Las Tablas incluidas en los Anexos Tabla A.2.5, Tabla A.2.6 y Tabla A.2.7 presentan
la localización y valor de los peaks anuales detectados a nivel nacional entre 2015 y 2023,
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tanto para las series crudas como suavizadas, junto con una comparación directa entre am-
bas. Esta información sirve como referencia para evaluar el impacto del preprocesamiento
sobre la estabilidad, precisión y sesgo de los modelos de predicción.

El procedimiento consiste en:

1. Seleccionar los datos previos a una fecha inicial.

2. Construir ventanas deslizantes retrospectivas sobre las columnas cruda y suavizada
para generar las características xt.

3. Evaluar con el modelo ensemble hospitalario.

4. Retroalimentar la predicción al conjunto histórico, permitiendo avanzar día a día de
manera autorregresiva.

Este enfoque prospectivo permite proyectar la evolución diaria de las atenciones hos-
pitalarias, bajo el supuesto de que el patrón reciente es informativo sobre la dinámica
futura.

3.9. Evaluación de desempeño

Para evaluar el desempeño predictivo de los modelos desarrollados, se utilizaron mé-
tricas estándar de regresión que permiten evaluar el rendimiento del modelo.

• MAE (Error absoluto medio)

• RMSE (Error cuadrático medio)

• MAPE (Error porcentual absoluto medio)

• R2 (Coeficiente de determinación)

37



La Tabla 3.2 resume las fórmulas empleadas, las variables involucradas y la interpre-
tación de cada métrica aplicada al módulo de predicción de incidencia hospitalaria. Estas
serán serán desarrolladas en el capítulo de Resultados.

Tabla 3.2: Métricas aplicadas para evaluar el módulo de predicción de ingresos hospitala-
rios.

Este capítulo documentó el proceso completo de formulación, modelado, entrenamiento
y selección del modelo ensemble penalizado para estimar la incidencia diaria de hospita-
lizaciones pediátricas. El modelo final seleccionado (W=21, H=14) genera una predicción
diaria autorregresiva basada en entradas crudas y suavizadas, que será utilizada como in-
sumo en el módulo de estimación de ocupación hospitalaria, presentado en el Capítulo 4.
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4 Estimación de ocupación de camas
El modelo utilizado para la estimación de la ocupación de camas pediátricas por causas

respiratorias, a partir de los ingresos de atenciones de urgencia diarias proyectados y el uso
de una función de duración de la estancia. Este módulo constituye la segunda etapa del
sistema predictivo propuesto, integrando las salidas del modelo de incidencia y permitiendo
evaluar la carga asistencial sobre la infraestructura hospitalaria en distintos escenarios.

4.1. Formulación del problema

Dado que los registros administrativos no entregan información directa sobre el uso
de camas, se propone un enfoque basado en el balance dinámico entre ingresos y egresos,
utilizando funciones de densidad y supervivencia ajustadas empíricamente.

La ocupación diaria se estima como el saldo entre los ingresos acumulados y los egresos
esperados, derivados a partir de una función de probabilidad de duración de estancia
obtenidos en datos de ingresos y egresos del HLCM para el año 2023. En este contexto, el
número de camas ocupadas en el día t+ 1 se define como:

∆B(t) = B(t+ 1)−B(t) = ingresost+1 − egresost+1

donde:

• B(t): número de camas ocupadas el día t

• ingresost ≡ Ht: número de pacientes que ingresan por causas respiratorias el día t

• egresost: número de pacientes que egresan el día t, estimado a partir de una distri-
bución de duración

4.2. Distribución de estancia hospitalaria

Para modelar la duración de hospitalización, se utilizaron datos anonimizados del Hos-
pital Luis Calvo Mackenna (HLCM) del año 2023. Se ajustaron distintas distribuciones
teóricas (log-normal, gamma, Weibull, exponencial) a los datos empíricos de días de es-
tancia, y se evaluó el ajuste mediante métricas estadísticas (AIC, BIC) y la prueba de
Kolmogórov–Smirnov.
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Como muestra la Figura 4.1, la distribución exponencial fue la que presentó el mejor
ajuste global, con media de estancia de 5 días (equivalente a µ = 0,2).

Figura 4.1: Comparación de ajuste de distribuciones a los días de estancia hospitalaria.

4.3. Comparación de métricas de las distribuciones

Los resultados presentados muestran que la distribución exponencial obtuvo el mejor
desempeño general, con el menor valor del estadístico de Kolmogórov–Smirnov (0.118), así
como los valores más bajos de AIC (10,154) y BIC (10,165).
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Como se resumen en la Tabla 4.1, donde se observa que la distribución exponencial mini-
miza tanto el AIC como el BIC, y presenta el menor estadístico de Kolmogórov–Smirnov,
validando su elección como modelo base para la duración de la hospitalización.

Tabla 4.1: Comparación de ajuste entre distribuciones teóricas de duración de estancia
hospitalaria.

Estas métricas indican que, entre las distribuciones evaluadas, la exponencial ofrece el
ajuste más parsimonioso y estadísticamente adecuado a los datos empíricos de duración
de estancia hospitalaria. Por ello, se seleccionó esta distribución como base para el modelo
de egresos en la estimación de ocupación.

4.4. Cálculo de egresos a partir de la función de proba-

bilidad

El modelo considera que cada cohorte de pacientes ingresados en días pasados puede
egresar con una probabilidad determinada por la función de densidad de la distribución
seleccionada. Para la distribución exponencial, la probabilidad de egreso exactamente en
el día t+ 1− k (para un paciente ingresado en k) es:

P (t+ 1− k) = e−λ(t−k) − e−λ(t+1−k)

Así, el total de egresos del día t+1 se calcula como la suma ponderada de los ingresos
pasados:

egresost+1 =
t∑

k=0

Hk · P (t+ 1− k)
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4.5. Modelo de estimación de ocupación

Conociendo los ingresos diarios Ht y estimando los egresos mediante la fórmula anterior,
se calcula la ocupación de camas en el día t+ 1 de forma acumulativa:

B(t+ 1) = B(t) +Ht+1 −
t∑

k=0

Hk · P (t− k)

o equivalentemente,

B(t+ 1) =
t+1∑
k=0

Hk · S(t+ 1− k)

donde S(·) es la función de supervivencia asociada a la distribución exponencial, es
decir:

S(k) = P(T > k) = e−λk

El modelo de estimación de ocupación desarrollado en este capítulo permite proyec-
tar dinámicamente el número de camas hospitalarias pediátricas utilizadas a partir de
los ingresos diarios estimados y una función de duración ajustada empíricamente. Esta
formulación integra de manera coherente las componentes de incidencia y egreso, propor-
cionando una herramienta cuantitativa para evaluar escenarios de presión asistencial. La
validación del modelo, así como la comparación entre las predicciones generadas por el
sistema y los datos observados del HLCM durante el año 2023, se presentan en detalle en
el Capítulo 5.
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5 Resultados
Este capítulo presenta los resultados obtenidos mediante el modelo de ensamble au-

torregresivo propuesto, aplicado a la predicción de ocupación hospitalaria pediátrica por
causas respiratorias. Se exponen los principales hallazgos del desempeño predictivo, la
comparación entre modelos base SIR y ensamble, y la simulación de escenarios operativos
bajo condiciones reales.

5.1. Validación con datos observados del HLCM en 2023

La validación del modelo se realizó con datos correspondientes al año 2023, ya que es el
único período para el cual se dispone de información completa y detallada sobre ingresos
y egresos hospitalarios por causas respiratorias en el HLCM. La fuente principal para las
atenciones de urgencia corresponde al DEIS, mientras que la información de ingresos y
egresos proviene de registros entregados directamente por el hospital.

Como ejercicio de validación interna del modelo de ocupación, se utilizó un conjunto
de datos reales del HLCM correspondientes al año 2023. Este dataset contiene la evolución
diaria del uso de camas pediátricas por causas respiratorias, lo que permite comparar la
ocupación estimada a partir de los ingresos reales con la ocupación observada a partir de
los datos de atenciones de urgencia del DEIS.

• Ocupación observada: datos reales de uso de camas en HLCM, basados en registros
internos.

• Ocupación modelada (desde ingresos reales): estimación computada mediante
la función de egresos sobre las atenciones reales DEIS.

A continuación podemos ver la visualización de los datos de validación:
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Figura 5.1: Comparación entre ocupación modelada (desde ingresos y egresos reales) y
ocupación estimada en el HLCM durante 2023 a partir de datos de atenciones de urgencia
del DEIS.

La Figura 5.1 muestra que el modelo logra capturar adecuadamente la tendencia general
de uso de camas, incluyendo el ascenso previo al peak estacional y la posterior caída. A
pesar de algunas diferencias en magnitud diaria, se observa una concordancia temporal
significativa entre ambos registros.

5.2. Desempeño del modelo de ensamble para predic-

ción de atenciones hospitalarias

Se entrenaron múltiples combinaciones de modelos base para la predicción autorregre-
siva de atenciones hospitalarias por causas respiratorias, seleccionando diferentes ventanas
móviles de entrenamiento con diferentes horizontes de predicción.

A continuación, se presenta una evaluación cuantitativa del desempeño de los modelos
de ensamble bajo distintas combinaciones de ventana deslizante y horizonte de predicción.

Se consideraron métricas clásicas de error (MAE, RMSE, sesgo), así como el coeficiente
de determinación R2, la magnitud del peak predicho, el error relativo del peak y la fecha de
ocurrencia (anticipación) del peak. Como referencia, se incluyen los resultados obtenidos
por el modelo epidemiológico SIR.
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La Tabla 5.1 resume estas métricas para cada configuración evaluada.

Tabla 5.1: Comparación de desempeño: modelo SIR vs. modelo propuesto (2023).

Los resultados muestran un comportamiento contrastante entre precisión de ajuste y
capacidad de anticipación. En términos de métricas de error, el modelo de ensamble con
ventana deslizante W = 21 días y horizonte de predicción H = 14 días presenta el mejor
rendimiento general, con el menor error cuadrático medio (RMSE = 5,46), el menor error
absoluto medio (MAE = 3,75) y un coeficiente de determinación R2 = 0,12, superior al del
resto de las combinaciones evaluadas. Esta configuración logra capturar adecuadamente
la magnitud del peak observado (29,0), con un error relativo de solo -0,48 y una fecha
predicha cercana (28 de junio).

Por el contrario, las combinaciones con ventanas más amplias (W = 30) o con horizon-
tes más cortos pero errores extremos (W = 21, H = 7) presentan un deterioro significativo
del desempeño, con valores de R2 altamente negativos (hasta −3,25× 106) y predicciones
completamente fuera de escala.

En cuanto a la capacidad de anticipación, el modelo epidemiológico SIR destaca por
predecir el peak con tres días de antelación (2 de junio versus 5 de junio observado), lo
que representa la mejor sincronía temporal entre todos los modelos evaluados. Aunque sus
métricas de error son más moderadas (RMSE = 6,42, R2 = −0,28), su valor operativo radi-
ca en su utilidad prospectiva para la planificación temprana en contextos de alta demanda.

Si bien existe un desfase temporal, la predicción se mantiene dentro de un margen
útil para propósitos operacionales, permitiendo alertar tempranamente sobre el ascenso
epidémico. Esta serie diaria de incidencia estimada fue utilizada como insumo para mode-
lar dinámicamente la ocupación hospitalaria, mediante un esquema que integra ingresos
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proyectados y una distribución probabilística de egresos. Así, el vector de predicción gene-
rado por este modelo no solo entrega valores cercanos a la observación, sino que también
habilita una proyección anticipada de la carga asistencial diaria en pediatría.

La predicción del modelo de ensamble con ventana deslizante W = 21 y horizonte de
H = 14 días logró capturar el peak estacional de hospitalizaciones respiratorias pediátricas
con un desfase temporal reducido respecto al valor observado.

Mientras que el peak real crudo se registró el 5 de junio de 2023, el modelo predijo su
ocurrencia para el 28 de junio del mismo año, con una diferencia de 23 días. Esta anticipa-
ción, aunque no exacta, permite una alerta temprana dentro de una ventana operacional
útil para la planificación hospitalaria.

La curva de incidencia generada por este modelo fue utilizada como insumo directo
para simular la ocupación diaria de camas pediátricas mediante un modelo dinámico de
hospitalización, el cual integra los ingresos estimados con una distribución probabilística
de egresos.

Esta vinculación entre la predicción de casos y la carga asistencial proyectada repre-
senta un aporte concreto al diseño de estrategias de mitigación frente a escenarios de alta
demanda.

La Figura 5.2 muestra la comparación entre la predicción del mejor modelo de ensam-
ble y las observaciones reales de hospitalización pediátrica por causas respiratorias en el
Hospital Luis Calvo Mackenna durante el año 2023.
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El modelo con ventana deslizante W = 21 y horizonte H = 14 días logró predecir
el peak estacional con una diferencia de 23 días respecto al valor crudo observado, que
ocurrió el 5 de junio. La predicción sitúa el peak para el 28 de junio, mientras que el valor
suavizado lo ubica unos días antes.

Figura 5.2: Comparación entre la predicción del modelo de ensamble (ventana W = 21,
horizonte H = 14) y los datos observados en el Hospital Luis Calvo Mackenna durante el
año 2023. Se visualizan las curvas observadas (cruda y suavizada) junto a la predicción
generada por el modelo, y se indican las fechas de los peaks correspondientes.

5.3. Estimación de ocupación hospitalaria pediátrica

A partir de las predicciones de atenciones de urgencia hospitalarias pediátricas obteni-
das con ambos modelos, se estimó la ocupación diaria de camas utilizando la distribución
empírica de días de permanencia del HLCM.
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En la Figura 5.3 se muestra la comparación entre la incidencia real y las predicciones
generadas por los modelos SIR y de ensamble. A partir de estas predicciones, se modeló
la ocupación hospitalaria diaria, la cual se presenta en la Figura 5.4 junto con la serie
observada de uso de camas.

Figura 5.3: Comparación de la incidencia hospitalaria real vs. predicha por los modelos de
Ensamble y SIR.

Figura 5.4: Comparación de la ocupación hospitalaria estimada a partir de las predicciones
de ambos modelos vs. ocupación real.
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El modelo autorregresivo mostró mejor capacidad para capturar la magnitud del com-
portamiento dinámico de la ocupación, pero el modelo SIR presenta mejor anticipación al
peak de la magnitud.

Los resultados presentados en la Tabla 5.2 evidencian una diferencia en el desempeño
entre ambos modelos al estimar la ocupación hospitalaria pediátrica.

Tabla 5.2: Evaluación de desempeño en estimación de ocupación hospitalaria pediátrica
utilizando las predicciones de los modelos Ensamble y SIR.

Los resultados presentados evidencian que el modelo de ensamble presenta un error
absoluto medio (MAE) de 21,75 camas y un error cuadrático medio (RMSE) de 29,28,
en contraste con los 32,26 y 41,15 registrados por el modelo SIR, respectivamente. Esto
indica que el ensamble comete errores de menor magnitud tanto en promedio como en los
casos más extremos.

Además, el coeficiente de determinación (R2) del modelo de ensamble alcanza un va-
lor positivo de 0,174, lo que indica cierta capacidad explicativa respecto a la variabilidad
observada en la ocupación real. Por el contrario, el modelo SIR muestra un R2 = −0,632,
lo que sugiere un ajuste pobre, inferior incluso al de una predicción constante basada en
el promedio observado.

En cuanto al sesgo (Bias), el modelo SIR subestima de forma sistemática la ocupación
real en más de 32 camas diarias en promedio, mientras que el modelo de ensamble pre-
senta un sesgo mucho menor, cercano a -4 camas. Esto refuerza la idea de que el modelo
propuesto es más balanceado en sus estimaciones.

En conjunto, estos indicadores muestran que el modelo de ensamble entrega una re-
presentación más confiable de la carga asistencial proyectada, y que su uso puede mejorar
sustancialmente la planificación operativa frente a períodos críticos de alta demanda. Ade-
más, su estructura flexible, combinando múltiples regresores con regularización, permite
capturar mejor la variabilidad observada y ajustarse con mayor precisión a los datos reales,
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especialmente durante los peaks estacionales.

Por otro lado, el modelo epidemiológico SIR destaca por su capacidad de anticipación,
logrando predecir el peak de hospitalizaciones con hasta tres días de adelanto respecto al
valor observado. Esta propiedad lo convierte en una herramienta valiosa para la generación
de alertas tempranas en contextos de alta demanda.

En conjunto, ambos modelos ofrecen ventajas complementarias: el SIR aporta oportu-
nidad, mientras que el ensamble aporta precisión. La incorporación del modelo propuesto
en escenarios operativos reales representa una alternativa sólida para mejorar la planifica-
ción asistencial frente a brotes respiratorios pediátricos.
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Discusión
Los resultados obtenidos en esta tesis permiten reflexionar sobre las posibilidades y de-

safíos de aplicar técnicas de modelamiento predictivo, especialmente métodos de ensamble
autorregresivo, en la planificación hospitalaria pediátrica por causas respiratorias en Chile.
A continuación, se discuten los principales hallazgos en relación con la literatura nacional
e internacional, evaluando sus implicancias, limitaciones y proyecciones.

Relevancia de la estacionalidad y variabilidad interanual

Como se evidenció en el análisis de datos históricos del MINSAL, las hospitalizaciones
pediátricas por infecciones respiratorias agudas (IRA) presentan un patrón estacional mar-
cado, concentrado entre los meses de mayo y agosto. Este comportamiento es consistente
con estudios globales sobre la circulación de virus como el VRS e influenza, que muestran
estacionalidades similares en regiones templadas del hemisferio sur [6, 1].

No obstante, se observó una considerable variabilidad interanual tanto en el inicio como
en la magnitud del peak, lo que representa un desafío para los enfoques de planificación
reactiva. Estudios como los de Fritz et al. [8] y Barros et al. [15] han señalado que esta va-
riabilidad compromete la efectividad de intervenciones sanitarias basadas exclusivamente
en la experiencia histórica, reforzando la necesidad de contar con modelos dinámicos de
predicción que incorporen dicha incertidumbre.

Modelos predictivos aplicados a la ocupación hospitalaria

Los modelos desarrollados en esta tesis, basados en ensambles autorregresivos, permi-
ten anticipar la ocupación hospitalaria a partir del balance diario entre ingresos y egresos
estimados. Esta lógica de flujo hospitalario contrasta con enfoques tradicionales basados
exclusivamente en proyecciones agregadas o curvas epidémicas. A diferencia de modelos
compartimentales clásicos como SIR [17, 4], la propuesta aquí desarrollada tiene una orien-
tación operativa, enfocada en predecir demandas puntuales de camas en ventanas de corto
a mediano plazo.

Comparado con métodos como ARIMA o SARIMA, que han sido utilizados amplia-
mente en predicción de series temporales hospitalarias [13], el esquema de ensamble mostró
ventajas tanto en precisión como en estabilidad, especialmente cuando se integra informa-
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ción ambiental y viral como variables exógenas. Resultados similares han sido reportados
en trabajos internacionales que aplican gradient boosting, redes LSTM o modelos híbri-
dos [21, 19].

Experiencia chilena en modelamiento en salud

Este trabajo se enmarca en una creciente línea de investigación nacional que explora
el uso de ciencia de datos para apoyar decisiones clínicas y de política pública. Destacan
iniciativas como la de Goic et al. [25, 30], quienes aplicaron modelos de riesgo para optimi-
zar estrategias de vacunación contra COVID-19, y el desarrollo de sistemas de pronóstico
hospitalario liderados por el Centro de Modelamiento Matemático (CMM) [2].

Asimismo, la propuesta metodológica aquí utilizada guarda relación con los trabajos
de Bravo [27], quien integró modelos epidemiológicos con redes neuronales recurrentes en
un hospital pediátrico de alta complejidad, obteniendo buenos resultados en predicción del
uso máximo de camas. De forma complementaria, estudios exploratorios como el de Con-
treras [28] han utilizado fuentes no tradicionales (Google Trends) para anticipar demanda
de urgencia, lo que refuerza la viabilidad de enfoques innovadores adaptados al contexto
chileno.

Limitaciones del estudio

Entre las principales limitaciones, se identifica la falta de acceso a datos oficiales de
egresos hospitalarios diarios, lo que obligó a estimar esta variable mediante distribuciones
empíricas de días de permanencia. Si bien esta aproximación es razonable y replicable [15],
su precisión depende de la calidad de los datos de referencia y podría mejorarse si se in-
corporan registros longitudinales clínicos completos.

Otra limitación importante es la baja disponibilidad de información en tiempo real so-
bre circulación viral (por ejemplo, VRS o influenza) y variables ambientales desagregadas.
Estudios internacionales han mostrado que incluir estas variables mejora sustancialmente
el desempeño predictivo [13, 16], por lo que su integración futura en sistemas nacionales
podría fortalecer modelos de predicción operativa.
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Implicancias para la planificación sanitaria

Los resultados de este estudio tienen implicancias directas para la gestión hospitalaria,
especialmente en unidades pediátricas sometidas a alta presión estacional. Contar con pre-
dicciones confiables de ocupación permite anticipar necesidades de personal, reconversión
de camas y medidas de contención como el adelantamiento del receso escolar, lo que podría
mejorar la eficiencia y seguridad del sistema asistencial [10].

Además, el enfoque de ensamble permite adaptarse a diferentes configuraciones hos-
pitalarias sin requerir modelos completamente específicos por institución, facilitando su
implementación escalable a nivel nacional o regional, en línea con iniciativas como la
UGCC.

Proyecciones y líneas futuras

Como líneas de trabajo futuras, se propone:

• Integrar variables ambientales (temperatura, humedad, contaminación) y epidemio-
lógicas (vigilancia viral) como regresores externos.

• Automatizar la actualización diaria de predicciones mediante conexiones a bases de
datos ministeriales o institucionales.

• Validar el modelo en otros hospitales pediátricos del país y realizar estudios pros-
pectivos con aplicación operativa real.

• Explorar esquemas de inferencia bayesiana para cuantificar la incertidumbre de las
predicciones y facilitar su interpretación clínica.

En conjunto, este estudio ofrece una contribución metodológica concreta al desafío de
anticipar escenarios críticos en salud pediátrica respiratoria, abriendo espacio para un uso
más estratégico de los datos disponibles y para una planificación hospitalaria basada en
evidencia y prospectiva.
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Conclusión
Este trabajo presentó un enfoque integrado de predicción de ingresos hospitalarios

pediátricos por causas respiratorias y estimación de ocupación hospitalaria, combinando
técnicas de aprendizaje supervisado y simulación basada en distribuciones empíricas.

Hallazgos principales

• Se desarrolló un conjunto de modelos base heterogéneos y un esquema de ensamblado
con penalización ℓ1, obteniendo mejoras sistemáticas en el desempeño predictivo.

• La ocupación de camas se estimó de forma indirecta a partir de ingresos proyectados
y una función de egreso ajustada a datos reales, logrando resultados coherentes con
los registros hospitalarios.

• El modelo permite anticipar escenarios críticos con al menos 7 días de antelación, lo
que puede fortalecer la respuesta operativa en contextos de alta presión asistencial.

Líneas futuras

Este enfoque puede extenderse mediante:

• Incorporación de factores clínicos y estacionales adicionales (p. ej., virus circulantes).

• Ajuste bayesiano de parámetros en tiempo real.

• Generalización a otras poblaciones (adultos, causas no respiratorias) o a nivel regio-
nal/nacional.

Reflexión final

La combinación entre inteligencia artificial y epidemiología operativa permite desarro-
llar herramientas predictivas replicables, adaptables y con alto valor para la planificación
hospitalaria en sistemas con información parcial o desagregada. Este trabajo contribuye a
ese camino, proponiendo una metodología robusta, transparente y validada empíricamente.
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A Anexos

A.1. Diccionario de variables

En este apartado se presenta el diccionario de variables utilizadas en el análisis, con su
descripción, tipo de dato y fuente de origen.

A.1.1. Variables geográficas y de identificación

Tabla A.1.1: Diccionario de variables de identificación del Establecimiento.
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A.1.2. Variables de atención clínica

Tabla A.1.2: Diccionario de variables de tipo, características y causa de atención.

A.1.3. Variables de distribución etaria

Tabla A.1.3: Diccionario de variables de distribución etaria de las atenciones de urgencia
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A.1.4. Variables temporales

Tabla A.1.4: Diccionario de variables de temporalidad

A.2. Tablas complementarias

A.2.1. Listado de peaks anuales en serie cruda

Tabla A.2.5: Listado de peaks anuales en series crudas a nivel nacional (2015–2023).
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A.2.2. Listado de peaks anuales suavizados

Tabla A.2.6: Listado de peaks anuales suavizados a nivel nacional (2015–2023).
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A.2.3. Comparación entre peaks suavizados y crudos

Tabla A.2.7: Estadísticas comparativas de peaks anuales suavizados vs crudos (2015–2023).
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