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1. RESUMEN 

El sistema de Grupos Relacionados por Diagnóstico (GRD) constituye una herramienta 

estandarizada utilizada internacionalmente para clasificar los episodios hospitalarios a partir 

de datos administrativos y clínicos. Fue concebido originalmente para clasificación 

retrospectiva, destinada a describir los episodios hospitalarios una vez finalizada la atención. 

El propósito de esta herramienta es clasificar y organizar los egresos hospitalarios de manera 

efectiva, agrupándolos según patrones comparables de diagnósticos, procedimientos, edad 

y comorbilidades. Esto permite una visión estructurada y detallada de la casuística de los 

pacientes. 

 

Cuando el GRD se utiliza con fines de evaluación de desempeño o eficiencia hospitalaria, 

surgen casos que exceden los parámetros estadísticos definidos para su grupo: los 

denominados outliers superiores, que es definido por aquel paciente cuya duración de 

hospitalización excede significativamente el tiempo esperado establecido para su respectivo 

GRD. Estos no representan errores del sistema de codificación, sino variaciones extremas 

dentro de un grupo clínico homogéneo, que reflejan la complejidad real del proceso 

asistencial, la presencia de complicaciones, o diferencias en la organización del cuidado. 

 

El problema central radica en que la asignación del GRD ocurre de manera retrospectiva (al 

alta médica del paciente) por lo que no permite anticipar qué casos evolucionarán hacia ser 

outliers superiores. Así, aunque el GRD describe adecuadamente lo ocurrido, no ofrece 

herramientas para intervenir de forma temprana. Esta brecha entre descripción y predicción 

constituye el punto de partida de este estudio, orientado a desarrollar modelos que permitan 

identificar precozmente a los pacientes con riesgo de ser outliers superiores al momento del 

ingreso hospitalario.  

 

El presente estudio tiene como objetivo identificar de manera temprana a los pacientes con 

riesgo de convertirse en outliers superiores al momento de su ingreso por el Servicio de 

Urgencia del Hospital Clínico de la Universidad de Chile (HCUCH), utilizando modelos 

predictivos basados en algoritmos de aprendizaje automático (machine learning). Para ello, 

se empleó la base de datos GRD del HCUCH, que comprende 13.760 egresos hospitalarios 

correspondientes a los años 2018, 2019 y 2022. Se incluyeron pacientes de 15 años o más 

cuyo ingreso se produjo a través del servicio de urgencias.  
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A continuación, y acorde a los objetivos específicos que se señalarán, se describe el proceso 

de clasificación GRD, que integra información demográfica, administrativa y clínica 

codificada según los sistemas CIE-10 (diagnósticos) y CIE-9 (procedimientos). Este 

procedimiento permite asignar un GRD específico a cada hospitalización, constituyendo la 

base para el análisis comparativo de estancias.  

  

Posteriormente, se realiza un análisis descriptivo de la cohorte seleccionada (≥ 15 años, 

ingreso por urgencia), identificándose 568 códigos GRD únicos. Los pacientes clasificados 

como outliers superiores correspondieron al 4,6 % del total de egresos (n = 632), con una 

mediana de 27 días de hospitalización, significativamente mayor que la de los inliers (6 días; 

p < 0,001). Las variables asociadas a una mayor probabilidad de ser outlier superior fueron 

el ingreso a unidades críticas, el triaje de alta prioridad y diagnósticos iniciales como sepsis, 

insuficiencia respiratoria o abscesos periamigdalinos.  

  

A continuación, se evalúan diferentes modelos predictivos supervisados obteniéndose un 

AUC ROC de 0,653 para Regresión Logística y 0,663 para Naive Bayes, el rendimiento 

general fue moderado, condicionado por el desbalance de clases y la heterogeneidad 

diagnóstica.  

  

Entre las principales limitaciones se identificaron: la baja prevalencia de outliers, la similitud 

entre variables clínicas iniciales de ambos grupos y la influencia de factores no observables 

al ingreso hospitalario. Estos resultados destacan la necesidad de fortalecer los modelos 

predictivos mediante la incorporación de bases de datos ampliadas, variables clínicas 

dinámicas y características longitudinales del proceso de atención.  

  

En conclusión, este trabajo sienta las bases para el desarrollo de un modelo predictivo precoz 

capaz de detectar pacientes con riesgo de ser outliers o inliers hospitalarios, integrando 

variables clínicas iniciales disponibles al ingreso. En el futuro, este modelo podría 

complementarse con herramientas de inteligencia artificial, orientadas a optimizar la 

asignación de recursos y fortalecer la calidad asistencial 
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2. ABSTRACT 

The Diagnosis-Related Group (DRG) system is an internationally recognized, standardized 

tool used to classify hospital episodes based on administrative and clinical data. It was 

originally conceived for retrospective classification, intended to describe hospital episodes 

once care had concluded. The purpose of this tool is to effectively classify and organize 

hospital discharges, grouping them according to comparable patterns of diagnoses, 

procedures, age, and comorbidities. This allows for a structured and detailed view of patient 

casuistry.  

 

When the DRG is used for hospital performance or efficiency evaluation, cases that exceed 

the defined statistical parameters for their group emerge: these are called high-end outliers. 

A high-end outlier is defined as a patient whose length of stay significantly exceeds the 

expected time established for their respective DRG. These do not represent coding errors, 

but rather extreme variations within a clinically homogeneous group, reflecting the real 

complexity of the care process, the presence of complications, or differences in the 

organization of care. 

 

The central problem lies in the fact that DRG assignment occurs retrospectively (upon 

patient discharge), which does not allow for anticipating which cases will evolve into high-

end outliers. Thus, while the DRG adequately describes what happened, it does not offer 

tools for early intervention. This gap between description and prediction is the starting point 

of this study, which is focused on developing models that allow for the early identification 

of patients at risk of becoming high-end outliers at the time of hospital admission. 

 

The present study aims to identify, at the moment of admission through the Emergency 

Department (ED) of the Hospital Clínico de la Universidad de Chile (HCUCH), those 

patients at risk of becoming high-end outliers, using predictive models based on machine 

learning algorithms. For this purpose, the HCUCH DRG database, comprising 13,760 

hospital discharges corresponding to the years 2018, 2019, and 2022, was utilized. Patients 

aged 15 years or older whose admission occurred through the emergency service were 

included. 
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In line with the specific objectives outlined below, the DRG classification process is 

described, which integrates demographic, administrative, and clinical information coded 

according to the ICD-10 (diagnoses) and ICD-9 (procedures) systems. This procedure allows 

a specific DRG to be assigned to each hospitalization, forming the basis for the comparative 

analysis of lengths of stay. 

 

Subsequently, a descriptive analysis of the selected cohort (age >15 years, ED admission) 

was performed, identifying 568 unique DRG codes. Patients classified as high-end outliers 

accounted for 4.6% of total discharges (n = 632), with a median length of stay of 27 days, 

significantly longer than that of inliers (6 days; p < 0.001). Variables associated with a higher 

probability of being a high-end outlier included admission to critical care units, high-priority 

triage, and initial diagnoses such as sepsis, respiratory failure, or peritonsillar abscess. 

 

Next, different supervised predictive models were evaluated, yielding an AUC ROC of 0.653 

for Logistic Regression and 0.663 for Naive Bayes; the overall performance was moderate, 

conditioned by class imbalance and diagnostic heterogeneity. 

 

Key limitations identified were: the low prevalence of outliers, the similarity between initial 

clinical variables of both groups, and the influence of factors not observable at hospital 

admission. These results highlight the need to strengthen predictive models by incorporating 

expanded databases, dynamic clinical variables, and longitudinal characteristics of the care 

process. 

 

In conclusion, this work lays the foundation for developing an early predictive model 

capable of detecting patients at risk of being hospital outliers or inliers, integrating initial 

clinical variables available at admission. In the future, this model could be complemented 

with artificial intelligence tools aimed at optimizing resource allocation and strengthening 

care quality. 

 

 

 

 



     
  

10 

3. INTRODUCCIÓN 

 

3.1. Antecedentes  

Los grupos relacionados a diagnóstico (GRD) son un sistema de clasificación de pacientes 

que son clínicamente consistentes y que tienen patrones similares de utilización de recursos 

medidos a través de la duración de la estadía hospitalaria (1). La clasificación GRD tiene 

fundamentalmente dos componentes, la primera es la lógica de agrupación que clasifican 

decenas de miles de servicios de hospitalización en un número limitado de grupos en función 

de la similitud tanto de diagnósticos como de tratamientos que recibieron los pacientes y la 

segunda componente son los recursos relevantes que se utilizaron durante la hospitalización 

(2). La clasificación GRD de la hospitalización de un paciente es única y excluyente, es decir 

que sólo puede asignarse un sólo código GRD y los demás códigos son descartados. 

 

Fue originado en Estados Unidos por Fetter et al en la década de 1960, siendo la primera 

generación de sistemas de GRD desarrollada en 1976 (1). En Chile, el año 2002 en el 

Hospital Clínico de la Universidad Católica fue presentado un proyecto FONDEF para la 

implementación de sistema de GRD y en noviembre del año 2009 se lleva a cabo el proyecto 

de “Implementación de Sistema de Grupos Relacionados al Diagnóstico en Hospitales de 

Alta Complejidad” con 16 instituciones participantes a nivel nacional. La incorporación de 

más hospitales fue progresiva, el año 2011 se integran 23 hospitales y en el año 2012 otros 

18 y en el año 2020, se incorporan 65 establecimientos de la Red Pública (55 de alta 

complejidad y 10 de mediana complejidad) (3).  La Unidad de GRD del HCUCH se creó a 

partir de la firma del convenio entre el Banco Interamericano de Desarrollo (BID) y la 

Universidad de Chile para el desarrollo del Proyecto Instrumentos para el Mejoramiento de 

la Gestión y Productividad en el Mercado Hospitalario Chileno en el año 2007 (4). 

 

La producción de un hospital es un proceso difícil de medir debido a lo complejo de las 

actividades asistenciales hospitalarias y a las dificultades inherentes a cualquier actividad de 

servicios. La clasificación de pacientes según metodología GRD fue diseñado para gestionar 

los costos de atención médica y mantener operaciones sostenibles para los pacientes 

hospitalizados y se ha convertido en un componente importante de los pagos de atención 

médica en muchos países para promover el riesgo compartido entre las aseguradoras y los 

prestadores (clínicas u hospitales) (5). En el año 2020 ha sido incorporado como principal 
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mecanismo de pago de FONASA a los hospitales públicos, siendo una herramienta valiosa 

para el seguimiento de costos y asignación de recursos. La codificación normalmente se 

realiza de forma retrospectiva después del alta con el egreso hospitalario (3).  

 

Para que un egreso hospitalario sea clasificado a un GRD determinado, se debe contar con 

información de la hospitalización, esto es conocido como conjunto mínimo básico de datos 

(CMBD) que constituye un resumen o extracto de información administrativa y clínica 

estandarizada, recogida a partir del egreso hospitalario (6, 7). Cada uno de los componentes 

del CMBD serán las variables necesarias como fuente de información para el proceso de 

agrupación a través de una herramienta informática, existiendo un analizador clínico 

estadístico disponible en cada uno de los centros, se logra entregar informes para la gestión 

clínica y toma de decisiones documentada (3). 

  

Los algoritmos de agrupación de GRD proceden de los mismos agrupadores base, como los 

HCFA-GRDs (Health Care Finance Administration DRGs) creados en 1983, los AP-GRDs 

(All Patient DRGs) de 1988, los APR-GRDs (All Patient Refined DRGs) de 1994 y los 

IRDRGs (International Refined DRGs) de 2000. Las diferentes terminologías surgen por la 

evolución de los agrupadores y los objetivos que se buscan cubrir. Muchos países han 

adaptado versiones de los GRD a sus necesidades específicas de información y prácticas 

clínicas locales (8). En Chile el  agrupador  que se utiliza es el International Refined GRD 

(IR-GRD) versión 3.0, que es usado tanto en el ámbito público como privado y su 

particularidad es que permite la codificación de pacientes provenientes como egresos de la 

actividad ambulatoria y de la actividad con hospitalizados. Además, emplea un eje de 

agrupación centrado en el procedimiento, pero no cualquiera, sino el que consuma mayor 

recurso o que esté más asociado con la categoría diagnóstica mayor (CDM)(3). EL IR-GRD 

v 3.0 tiene 1081 GRD totales, de los cuales 792 (73%) pertenecen a GRD hospitalizados, 

tiene 3 niveles de severidad y 3 riesgos de mortalidad (9). Los pacientes de un GRD 

individual (grupo) muestran un curso similar de la enfermedad y una duración comparable 

de la estancia media hospitalaria, por lo tanto, los gastos también deben ser comparables, lo 

que permite vincular un grupo GRD específico con el reembolso a la institución sanitaria 

(10). 
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Los IR-GRDs tienen 6 dígitos, cada posición nos proporciona la siguiente información (3) 

(Fig N° 01): 

- Dígitos 1 y 2 corresponden al código de la categoría diagnóstica mayor (CDM), que 

va desde el 01 al 23 (Anexo N° 01), por ejemplo, la categoría CDM 07 pertenece a: 

“Enfermedades y trastornos de hígado, sistema biliar y páncreas” 

- Dígito 3 corresponde al tipo de GRD, que va desde el 0 al 9 (Anexo N° 02), y se 

interpreta  como el tipo de episodio, el 4 pertenece a médico hospitalizado. 

- Dígitos 4 y 5 corresponde al GRD especifico, va del 00-99, es único para CDM y 

tipo de GRD, por ejemplo, según 07 (CDM) y 4  (médico hospitalizado 4) tenemos 

según IR-GRD 3.0: 

o 074 - 10 MH Hepatitis alcohólica y cirrosis  

o 074 - 11 MH Neoplasias de páncreas y sistema hepatobiliar  

o 074 - 12 MH Enfermedades de páncreas excepto neoplasias  

o 074 - 13 MH Enfermedades hepáticas excepto neoplasias, cirrosis o hepatitis 

alcohólica  

o 074 - 14 MH Otras enfermedades del sistema biliar 

- Dígito 6 corresponde al nivel de severidad, en el caso de ambulatorios el número es 

cero y en el caso de hospitalizados tiene 3 niveles de severidad: 1 = menor, 2 = 

moderada y 3 = mayor. 

- Existe un dígito 7 que no está explícito en el código GRD, pero representa un 

indicador de riesgo de mortalidad: 1 = menor, 2 = moderada y 3 = mayor. 

- Tanto la severidad como el riesgo de mortalidad es determinado por las 

comorbilidades, edad y diagnósticos secundarios que presenta el paciente. 

- También existen códigos de error o inagrupables (que empiezan con el número 99) 

que son por inconsistencia entre diagnósticos, codificación, tipo de GRD o datos 

administrativos. Por ejemplo asignar un procedimiento como “cesárea” a sexo 

“hombre”. 

 



     
  

13 

 
Figura N° 01 Lógica de numeración del IR-GRD (3) 

 

Con los datos clínicos ingresados al agrupador se pueden obtener indicadores de producción 

hospitalaria, como la frecuencia en la casuística hospitalaria, los IR-GRD más frecuentes, la 

información de estancia media hospitalaria y peso medio para ese grupo específico; 

adicionalmente también se pueden obtener indicadores de eficiencia como el porcentaje de 

outliers superiores, estancia media (EM), estancia media de la Norma (EMN), estancia 

media ajustada por el funcionamiento (EMAF) e índice funcional (IF) (4) . Esto permite 

conocer y cuantificar lo que el hospital produce y estos datos tienen relevancia para la 

gestión clínica y financiera ya que nos permite evaluar el desempeño de diferentes servicios 

clínicos a través del tiempo y con otras instituciones de salud. Actualmente el estándar 

nacional está dado por la Norma MINSAL 2018-2019 (9). 

 

Los outliers superiores son los pacientes cuya estancia fue mayor del punto de corte 

superior para ese GRD en específico (fórmula: Percentil 75 + 1,5 x [Percentil 75-Percentil 

25]) para la norma MINSAL 2018-2019 vigente a la fecha (4,11). Su porcentaje constituye 

un indicador relevante para detectar problemas en la gestión hospitalaria, ya que estos casos 

suelen analizarse retrospectivamente y pueden reflejar complicaciones clínicas, o 

ineficiencias en la atención, es importante porque implican un consumo de recursos 

desproporcionado en relación con su GRD asignado. 

 

Con respecto a los factores de riesgo para estancias hospitalarias prolongadas según GRD 

(outliers superiores), se han identificado diversas variables, las cuales varían según la 

población y el tipo de hospital. Un estudio retrospectivo en un hospital universitario 

traumatológico en Suiza investigó los factores predictivos de estancias prolongadas, 

encontrando que estaban asociados a la edad (65 años o más), múltiples diagnósticos, 

comorbilidades, infecciones y complicaciones perioperatorias (12). En Turquía, un estudio 
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en 15 hospitales docentes mostró que los outliers superiores representaban solo el 4.4% de 

los pacientes, pero acumulaban el 24.5% de los días de hospitalización, con factores 

influyentes como quemaduras, uso de drogas/alcohol y casos neonatales (13). En Portugal, 

se identificó que los outliers superiores constituían el 3.9% de los casos, representando el 

19.2% de los días de hospitalización. Los factores más influyentes fueron la edad avanzada, 

el ingreso de emergencia, comorbilidades y el tipo de hospital, especialmente en grandes 

hospitales universitarios (14). 

 

El sistema GRD es una herramienta de gestión hospitalaria y financiera para abordar calidad 

de atención, eficiencia hospitalaria y problemas de costo, pero la pregunta es si reflejan 

adecuadamente la complejidad de los diferentes grupos de pacientes hospitalizados (2),  

como por ejemplo, en accidente cerebro vascular (15), trauma (16), parto (17), entre otros. 

Básicamente, en el sistema GRD se han buscado productos homogéneos que consuman 

recursos hospitalarios de forma similar, por lo que es una excelente herramienta de gestión 

(18). 

 

Una de las principales preocupaciones con respecto a la implementación de sistema GRD es 

su efecto en la calidad de atención, como por ejemplo favorecer las altas precoces. En un 

metaanálisis de 29 estudios en China se evaluó la efectividad del sistema GRD en la calidad 

de la atención hospitalaria, el cual demostró que fue efectivo en reducir la duración de la 

estancia hospitalaria, sin embargo, no se encontró un efecto significativo en indicadores de 

calidad como las tasas de reingreso dentro de los 30 días ni en la mortalidad hospitalaria 

(19). En Suiza la implementación de GRD en una unidad de cuidados intensivos (UCI) no 

afectó la política de admisión, excepto por un aumento de pacientes internos con una baja 

gravedad clínica de la enfermedad, y tampoco afectó la mortalidad ni la estancia hospitalaria 

(10).  

 

Existe un modelo basado en procesamiento de lenguaje natural (PLN) DRG-LLaMA que fue 

introducido para predecir código GRD a partir del egreso hospitalario del conjunto de datos 

del MIMIC IV, el modelo mejoró la precisión de la asignación del GRD, alcanzado un 52% 

de exactitud, superando otros modelos, aunque este modelo se basa en datos post alta 

hospitalaria, nos indica que el uso de evoluciones clínicas tempranas nos podrían permitir 

predecir GRD (20). 
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Existen estudios que han intentado predecir en forma precoz el código GRD mediante un 

modelos de PLN, con el objetivo de anticipar costos y optimizar la asignación de recursos 

en tiempo real. En uno de ellos, los datos de entrada fueron las evoluciones clínicas dentro 

de las primeras 24 a 48 horas de ingreso a una unidad de cuidados intensivos (UCI), el 

modelo fue de aprendizaje profundo (Deep learning) basado en convolutional neural 

networks (CNN), resultando en una predicción bastante precisa tanto para el sistema MS-

DRG y APR-DRG (21). Otro estudio utilizó como modelos CNN y gated recurrent unit 

(GRU), siendo este último el que tuvo mayor precisión en los diagnósticos primarios (22). 

 

3.2. Marco teórico 

 

Preprocesamiento de datos: 

En el ámbito del análisis secundario de registros clínicos electrónicos (RCE), el proceso de 

preprocesamiento de datos se establece como una fase metodológica indispensable y crítica 

para la validez de la investigación. Dada la naturaleza de los RCE, cuyo propósito original 

es la asistencia clínica y no la investigación, los datos inherentes suelen presentar desafíos 

significativos como la heterogeneidad en los formatos, el ruido, los errores de registro y una 

prevalencia notable de valores faltantes. Como se detalla en la literatura especializada (MIT 

Critical Data, 2016), esta etapa abarca una serie de acciones rigurosas que inician con la 

selección precisa de la cohorte y la limpieza de datos, seguidas por la integración y 

transformación de variables clínicas. Un componente esencial es la gestión de la información 

incompleta, donde se aplican diversas estrategias de imputación para mitigar el sesgo 

potencial. La finalidad última del preprocesamiento es la obtención de un conjunto de datos 

estructurado, "ordenado" (tidy) y confiable, capaz de soportar la aplicación de modelos 

estadísticos avanzados y de machine learning para generar inferencias causales y predictivas 

robustas (23). 

 

Dentro de las principales técnicas se incluyen (24):  

 

1. Data Cleaning (Limpieza de datos): aborda los principales problemas de calidad presentes 

en los datos clínicos y administrativos, tales como valores faltantes, registros incompletos, 

ruido, duplicidades e inconsistencias. Existen diversas estrategias para manejar valores 
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faltantes, que incluyen desde la omisión de registros cuando la ausencia es extensa, hasta 

métodos de imputación como el uso de una constante global, la media del atributo, la media 

dentro de cada clase o el valor más probable mediante modelos estadísticos. Asimismo, 

existen técnicas para reducir el ruido en los datos, como binning, regresión y clustering,  que 

permiten suavizar variaciones anómalas y reconocer outliers que podrían distorsionar el 

análisis. Esta etapa es fundamental para garantizar un conjunto de datos limpio, coherente y 

confiable antes de aplicar modelos predictivos. 

 

2. Data Integration (Integración de datos): Combina información proveniente de múltiples 

fuentes, resolviendo inconsistencias estructurales y semánticas entre ellas. La integración 

requiere identificar y eliminar redundancias, armonizar formatos de variables y unificar 

esquemas de datos, lo que resulta especialmente relevante en entornos hospitalarios donde 

conviven sistemas administrativos, clínicos y de codificación. Además, incluye la 

agregación de datos en estructuras multidimensionales, como data cubes,  que permiten 

resumir información por períodos, servicios o grupos diagnósticos. Una integración 

adecuada mejora la consistencia global del dataset y facilita la construcción de una base 

consolidada para análisis descriptivos y predictivos. 

 

3. Data Transformation (Transformación de datos): Esta etapa adapta los datos a un formato 

adecuado para su análisis estadístico o su incorporación en algoritmos de machine learning. 

Existen técnicas como la normalización, que ajusta la escala de las variables para evitar que 

atributos con rangos mayores dominen el modelo; la agregación, utilizada para sintetizar 

valores repetidos o generar indicadores globales; y la generalización, que permite convertir 

valores muy específicos en categorías más manejables mediante jerarquías conceptuales. 

También se incluyen métodos de suavizado para reducir variabilidad no deseada y facilitar 

la detección de patrones. La transformación convierte los datos crudos en representaciones 

más estables, comparables y aptas para el modelado predictivo. 

 

4. Data Reduction (Reducción de datos): Busca disminuir el volumen de información 

manteniendo la esencia del comportamiento de los datos. Incluye la reducción de 

dimensionalidad que permiten compactar múltiples atributos correlacionados en 

componentes más informativos. También abarca métodos de reducción de numerosidad 

como muestreo, histogramas y clustering, los cuales representan grandes volúmenes de datos 
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mediante resúmenes o grupos homogéneos. Asimismo, la discretización, por binning, 

histogramas o métodos basados en entropía, permite transformar variables continuas en 

intervalos más adecuados para ciertos algoritmos. Estas técnicas mejoran la eficiencia 

computacional, reducen el ruido y fortalecen la capacidad de generalización de los modelos 

predictivos. 

 

Machine learning (ML):  

Es una rama de la inteligencia artificial que desarrolla algoritmos capaces de aprender 

patrones a partir de datos y mejorar su desempeño sin ser programados explícitamente para 

cada situación. En el ámbito de la salud, estos métodos permiten construir modelos 

predictivos aplicados a tareas como estratificación de riesgo, detección temprana de eventos 

clínicos y optimización de procesos hospitalarios. 

 

En el aprendizaje supervisado, los modelos utilizan datos etiquetados (por ejemplo, 

pacientes clasificados como outlier superior o no outlier) para aprender una función que 

prediga dicho resultado en nuevos casos. Este enfoque es el más utilizado en salud porque 

permite modelar relaciones complejas entre múltiples variables clínicas, demográficas y 

administrativas, utilizando algoritmos como regresión logística, Random Forest o XGBoost. 

Su objetivo principal es generalizar adecuadamente a datos no vistos, manteniendo precisión 

y estabilidad en contextos clínicos reales (25). 

 

Por otro lado, el aprendizaje no supervisado trabaja con datos sin etiquetas y busca descubrir 

estructuras ocultas, como agrupamientos o patrones latentes. En medicina, se utiliza para 

identificar perfiles de pacientes, patrones de uso hospitalario o subgrupos clínicamente 

significativos, contribuyendo a una mejor comprensión de la heterogeneidad en las 

poblaciones de estudio. Estos métodos complementan al aprendizaje supervisado al aportar 

una caracterización preliminar que puede guiar o enriquecer los modelos predictivos. 

 

Ambos paradigmas comparten desafíos clave en aplicaciones biomédicas, como la necesidad 

de manejar datos escasos o ruidosos, garantizar interpretabilidad y respetar la coherencia 

clínica. Los modelos predictivos en salud deben no solo alcanzar buen rendimiento, sino 

también demostrar robustez, capacidad de generalización y seguridad, especialmente en 

decisiones sensibles o contextos asistenciales complejos (26). De esta forma, el ML se 
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posiciona como una herramienta fundamental para apoyar la toma de decisiones clínicas y 

mejorar la eficiencia en los sistemas hospitalarios. 

 

Finalmente, el uso creciente de ML en medicina se apoya en la disponibilidad de registros 

clínicos electrónicos, bases administrativas y grandes repositorios biomédicos. En este 

entorno, los modelos predictivos se han vuelto una herramienta estratégica para optimizar 

decisiones clínicas, priorizar recursos, anticipar complicaciones y mejorar la eficiencia 

hospitalaria. No obstante, su utilidad depende de la calidad de los datos, de una validación 

adecuada y de su integración ética y responsable dentro de los flujos asistenciales. 

 

Para el presente estudio se emplearon algoritmos representativos de diversas familias de 

modelos, con el fin de comparar su desempeño predictivo bajo condiciones de desbalance 

de clases. A continuación, se presenta el fundamento conceptual de cada uno. 

 

- Regresión Logística (RegLog): La regresión logística es un modelo estadístico 

ampliamente utilizado para la predicción de variables dependientes binarias. Su 

fundamento radica en la estimación de la probabilidad de un evento mediante una 

función logística que transforma una combinación lineal de predictores en valores entre 

0 y 1. Su interpretabilidad y robustez frente a diversos tipos de datos la convierten en 

una herramienta común en el ámbito de la epidemiología y la predicción clínica (27). 

o Principales ventajas: interpretabilidad, eficiencia computacional. 

o Limitaciones: dificultad para capturar relaciones no lineales sin transformaciones 

adicionales. 

 

- Random Forest: es un método de ensamblaje (ensemble) basado en múltiples árboles de 

decisión construidos sobre subconjuntos aleatorios de datos y predictores. Su principio 

central es la reducción de la varianza mediante el promedio de múltiples modelos débiles, 

lo que mejora la estabilidad y generalización. Es especialmente útil para modelar 

relaciones no lineales y detectar interacciones entre variables (28). 

o Ventajas: robustez, manejo de datos faltantes, no requiere supuestos de 

distribución. 

o Limitaciones: menor interpretabilidad en comparación con modelos lineales. 
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- XGBoost (Extreme Gradient Boosting): es un algoritmo basado en boosting de gradiente, 

que construye modelos secuenciales en los que cada árbol corrige los errores del anterior. 

Se caracteriza por su alta eficiencia computacional, regularización incorporada y 

excelente rendimiento en conjuntos de datos estructurados. Es uno de los algoritmos más 

usados en competencias de predicción por su capacidad para manejar desbalance y 

capturar patrones complejos (29). 

o Ventajas: regularización L1/L2, manejo eficiente de grandes volúmenes de datos. 

o Limitaciones: puede sobreajustarse si no se controla el número de árboles. 

 

- LightGBM: es un algoritmo de gradient boosting optimizado desarrollado por Microsoft. 

Utiliza técnicas como leaf-wise growth y histogram-based splitting, lo que permite un 

entrenamiento significativamente más rápido que otros métodos de boosting. Es 

especialmente eficiente en conjuntos de datos con miles o millones de registros (30). 

o Ventajas: alta velocidad, bajo consumo de memoria, manejo nativo de datos 

categóricos. 

o Limitaciones: riesgo de sobreajuste en datos pequeños. 

 

- Support Vector Classifier (SVC): es un algoritmo basado en la identificación del 

hiperplano que maximiza el margen entre clases en un espacio multidimensional. 

Permite la utilización de funciones núcleo (kernels) para modelar relaciones no lineales 

al proyectar los datos en espacios de mayor dimensión (31). 

o Ventajas: excelente desempeño en problemas de clasificación con fronteras 

complejas. 

o Limitaciones: alta demanda computacional en conjuntos de datos grandes y 

sensibilidad a la selección de hiperparámetros. 

 

- Naive Bayes: es un clasificador probabilístico basado en el teorema de Bayes, bajo el 

supuesto de independencia condicional entre los predictores. A pesar de esta 

simplificación, es notablemente eficaz y presenta un excelente rendimiento en tareas con 

alta dimensionalidad o datos categóricos (25). 

o Ventajas: simple, rápido y eficiente incluso con conjuntos grandes. 

o Limitaciones: el supuesto de independencia puede no cumplirse en escenarios 

clínicos complejos. 



     
  

20 

 

- Red Neuronal Multicapa (MLP): pertenecen a la familia de modelos de aprendizaje 

profundo. Están compuestas por capas de neuronas artificiales conectadas entre sí que 

permiten aprender patrones no lineales y relaciones complejas entre variables. Se 

entrenan mediante retropropagación del error (backpropagation) y optimización por 

gradiente (25). 

o Ventajas: alta capacidad de modelar patrones complejos. 

o Limitaciones: requieren mayor cantidad de datos y ajustes finos de 

hiperparámetros para evitar sobreajuste. 

 

Modelos predictivos  

Los modelos predictivos constituyen herramientas fundamentales para anticipar desenlaces 

clínicos y apoyar la toma de decisiones basadas en datos. En el ámbito sanitario, su utilidad 

ha crecido de manera exponencial debido a la disponibilidad de registros clínicos 

electrónicos, bases administrativas y métodos de aprendizaje automático capaces de manejar 

múltiples variables simultáneamente (30). Estos modelos permiten estimar riesgos 

individuales, identificar pacientes con mayor probabilidad de presentar determinados 

eventos y optimizar la planificación clínica y hospitalaria. 

 

El desarrollo de un modelo predictivo clínico requiere seguir un marco metodológico 

riguroso que incluye la definición del objetivo, selección del desenlace, caracterización de 

la población, manejo de predictores, tratamiento de datos faltantes y validación interna y 

externa (32). Dicho proceso evita errores frecuentes como el sobreajuste, la selección no 

justificada de variables o la ausencia de evaluación de calibración, los cuales pueden 

comprometer la aplicabilidad real del modelo. 

 

En salud, los modelos basados en machine learning han mostrado ventajas relevantes al 

capturar relaciones no lineales y patrones complejos. Algoritmos como Random Forest, 

XGBoost, LightGBM y Redes Neuronales se destacan por su capacidad para integrar 

grandes volúmenes de datos clínicos y mejorar el rendimiento predictivo en comparación 

con modelos tradicionales (33). Estas técnicas se complementan con modelos clásicos como 

la Regresión Logística y Naive Bayes, que siguen siendo ampliamente utilizados por su 

interpretabilidad y robustez (34). La literatura enfatiza que los modelos predictivos aplicados 
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en medicina deben ser evaluados no solo en términos de discriminación (AUC-ROC, 

sensibilidad, especificidad), sino también en calibración y utilidad clínica, elementos clave 

para su incorporación en decisiones asistenciales (32). Asimismo, deben someterse a 

validación en poblaciones independientes, considerando que los cambios epidemiológicos, 

organizacionales o tecnológicos pueden afectar la estabilidad del rendimiento. 

 

Finalmente, la integración de modelos predictivos en salud representa una oportunidad para 

mejorar la eficiencia de los sistemas sanitarios, apoyar el diagnóstico temprano, reducir 

riesgos y distribuir recursos de forma más inteligente. Sin embargo, su utilidad depende 

estrictamente de la calidad de los datos, el rigor metodológico del desarrollo del modelo y 

el adecuado alineamiento con el contexto clínico de aplicación (35).  

 

Pasos para el desarrollo de un modelo predictivo 

El proceso de construcción de un modelo predictivo en el ámbito de la salud requiere seguir 

una secuencia estructurada de etapas metodológicas para garantizar validez interna, 

generalización y utilidad clínica. De acuerdo con la guía de Efthimiou et al. publicada en 

The BMJ (2024), el desarrollo de un modelo de predicción clínica implica trece pasos 

fundamentales, cuya aplicación rigurosa permite evitar sesgos, mejorar la reproducibilidad 

y maximizar su impacto asistencial (32).  

 

En primer lugar, es indispensable definir claramente el objetivo del modelo, incluyendo el 

desenlace a predecir, la población objetivo, el escenario clínico de aplicación y los usuarios 

que emplearán las predicciones. Esta definición inicial orienta todas las decisiones 

metodológicas posteriores. A continuación, se debe evaluar la evidencia existente, 

identificando modelos previos y sus limitaciones, lo que permite decidir entre desarrollar un 

modelo nuevo o actualizar uno ya existente. 

 

Posteriormente, se procede a especificar los predictores candidatos, seleccionados con base 

en literatura biomédica, plausibilidad clínica y disponibilidad en práctica real. De igual 

importancia es la obtención y exploración de los datos, lo que incluye la detección de errores, 

revisión de distribuciones, análisis del patrón de datos faltantes y verificación de la calidad 

de mediciones. En paralelo, deben considerarse criterios de tamaño muestral, ya que un 
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número insuficiente de eventos o predictores incrementa el riesgo de sobreajuste 

(overfitting) y limita la capacidad de generalización. 

 

La etapa subsecuente consiste en el manejo de los datos faltantes, recomendándose el uso de 

técnicas de imputación múltiple para conservar información y evitar sesgos asociados al 

análisis de casos completos. Una vez preparado el conjunto de datos, se procede a ajustar 

diferentes estrategias de modelamiento, que pueden incluir regresión logística, métodos 

penalizados o algoritmos de machine learning, según el tipo de datos y la complejidad del 

problema. 

 

El desempeño del modelo debe ser evaluado mediante validación interna, utilizando métodos 

robustos como bootstrapping o k-fold cross-validation, con el fin de estimar honestamente 

la discriminación, calibración y desempeño global. Asimismo, cuando los datos lo permiten, 

es recomendable realizar validación interna-externa, que evalúa la estabilidad del modelo en 

distintos subgrupos o centros. Tras comparar distintas alternativas, se selecciona el modelo 

final considerando rendimiento, estabilidad e interpretabilidad. 

 

Posteriormente, se recomienda realizar un análisis de curva de decisión para estimar la 

utilidad clínica del modelo a diferentes umbrales de riesgo, integrando beneficios y 

potenciales daños.  

 

En conjunto, estos pasos aseguran que un modelo predictivo no solo presente adecuado 

rendimiento estadístico, sino también aplicabilidad clínica, transparencia metodológica y 

potencial de impacto en la toma de decisiones en salud. 

 

 

 

Técnicas de sobremuestreo 

Las técnicas de sobremuestreo constituyen un conjunto de métodos destinados a corregir el 

desbalance en conjuntos de datos donde la clase minoritaria es escasamente representada. 

Esta problemática es frecuente en investigación clínica, donde los eventos relevantes 

(complicaciones, mortalidad, estancias prolongadas) suelen presentarse en baja proporción. 

El objetivo del sobremuestreo es aumentar la presencia de la clase minoritaria para mejorar 
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la capacidad de los modelos predictivos de identificar estos casos sin afectar el equilibrio 

global del dataset. En esencia, estas técnicas buscan reducir el sesgo hacia la clase 

mayoritaria y mejorar la sensibilidad en escenarios donde los casos minoritarios son 

clínicamente relevantes (36). 

 

Entre las técnicas de sobremuestreo más utilizadas destaca SMOTE (Synthetic Minority 

Oversampling Technique), que genera ejemplos sintéticos mediante interpolación entre 

instancias reales de la clase minoritaria. Este procedimiento evita la simple duplicación de 

registros y permite que el espacio de representación de la clase minoritaria se expanda de 

manera más realista. Diversas variantes, como SMOTEENN, combinan el sobremuestreo 

con métodos de limpieza de ruido, produciendo datasets más depurados y modelos más 

estables. El estudio comparativo entre SMOTE y SMOTEENN demostró que esta última 

técnica ofrece un desempeño superior en métricas de exactitud, estabilidad y generalización, 

especialmente en contextos clínicos donde existen valores extremos y ruido en los datos 

(37).  

 

Otra técnica de sobremuestreo utilizada para abordar el desbalance de clases es el método 

ADASYN (Adaptive Synthetic Sampling Approach for Imbalanced Learning) que constituye 

un aporte relevante al generar nuevos ejemplos sintéticos de manera adaptativa según la 

dificultad de aprendizaje de cada instancia minoritaria. A diferencia de métodos tradicionales 

como SMOTE, que asignan un número uniforme de muestras sintéticas a todos los casos 

minoritarios, ADASYN concentra la generación de datos en aquellos ejemplos ubicados en 

regiones más complejas del espacio de características, identificadas por la proporción de 

vecinos pertenecientes a la clase mayoritaria. Este enfoque permite reducir el sesgo hacia la 

clase dominante, mejorar la capacidad del modelo para aprender patrones difíciles y 

desplazar la frontera de decisión hacia zonas críticas del dataset. Los resultados 

experimentales muestran que ADASYN ofrece un desempeño superior en métricas sensibles 

al desbalance, mejorando el reconocimiento de la clase minoritaria sin deteriorar 

significativamente la mayoría (38). 

 

A pesar del uso extendido de las técnicas de sobremuestreo, la evidencia empírica reciente 

ha mostrado que su efectividad depende del tipo de problema y del algoritmo utilizado. Un 

análisis exhaustivo aplicado a más de 1.500 modelos predictivos en bases de datos de salud 
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reveló que el sobresampling aleatorio no mejora el rendimiento de modelos clínicos en 

términos de discriminación (AUROC) ni en validación externa. De hecho, estas técnicas 

pueden introducir descalibración, afectando la estimación correcta del riesgo clínico. 

Aunque dicho sesgo puede corregirse mediante recalibración posterior, el estudio concluye 

que el sobremuestreo simple no aporta beneficios sustanciales en escenarios de datos 

masivos y heterogéneos como los registros clínicos electrónicos (36).  

 

 

Evaluación de modelos predictivos 

La evaluación del desempeño de los modelos predictivos se realiza considerando de manera 

integral los componentes de discriminación, calibración y validación. La discriminación del 

modelo es analizada por Área Bajo la Curva ROC (AUC), que refleja su capacidad para 

diferenciar adecuadamente entre pacientes que presentan o no el evento de interés. La 

calibración, por su parte, se evalúa a través de curvas de calibración, el calibration slope y 

el Brier Score, permitiendo determinar la concordancia entre los riesgos predichos y los 

realmente observados. Asimismo, se implementan métodos de validación interna, como k-

fold cross-validation y bootstrapping, con el fin de corregir el optimismo inherente al ajuste 

del modelo en la misma cohorte de entrenamiento. De manera complementaria, se considera 

la importancia de la validación externa, necesaria para estimar la transportabilidad del 

modelo hacia nuevas poblaciones, así como su utilidad clínica mediante decision curve 

analysis, evaluando el beneficio neto de su aplicación en escenarios reales de toma de 

decisiones (32).  

 

Las métricas tradicionales de evaluación de modelos de clasificación, como Accuracy, 

Precision, Recall y F1-score, se basan en la asignación de una etiqueta final obtenida a partir 

de un umbral de decisión.  A continuación, se describen brevemente las principales métricas 

utilizadas para evaluar el desempeño de los modelos:  

 

1. Exactitud (Accuracy): proporción de predicciones correctas (positivas y 

negativas) respecto del total de casos evaluados.  

Donde: 
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TP = Total Positivos 

TN = Total Negativos 

FP = Falsos Positivos 

FN = Falsos Negativos 

 

2. Sensibilidad o Recall: capacidad del modelo para identificar correctamente los 

casos positivos (outliers).  

Donde: 

TP = Total Positivos 

FN = Falsos Negativos 

 

3. Precisión: proporción de verdaderos positivos entre todos los casos clasificados 

como positivos.  

Donde: 

TP = Total Positivos 

FP = Falsos Positivos 

 

4. F1-Score: media armónica entre precisión y sensibilidad; resume el equilibrio 

entre ambas.  

 

5. AUC-ROC (Área bajo la curva ROC): mide la capacidad global del modelo para 

discriminar entre clases (outlier vs inlier). Un valor de 0,5 indica rendimiento 

aleatorio y valores cercanos a 1,0 reflejan excelente discriminación.  
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Estas métricas se derivan de la matriz de confusión, que clasifica las predicciones en 

verdaderos positivos (TP), verdaderos negativos (TN), falsos positivos (FP) y falsos 

negativos (FN). Su interpretación conjunta permite valorar la utilidad clínica de un modelo 

predictivo, especialmente en contextos con baja prevalencia del evento, como en este 

estudio. Estas métricas son ampliamente utilizadas debido a su simplicidad y su capacidad 

para ofrecer una primera aproximación al desempeño del modelo. Sin embargo, su valor 

interpretativo puede ser limitado en contextos donde existen clases desbalanceadas o 

cuando el modelo produce probabilidades más ricas que una simple predicción binaria (39).  

Interpretabilidad de los datos 

La interpretabilidad en modelos de clasificación constituye un componente esencial en el 

desarrollo de sistemas de soporte clínico basados en inteligencia artificial. Aunque los 

modelos de aprendizaje automático han demostrado una capacidad creciente para procesar 

grandes volúmenes de datos y detectar patrones complejos, muchos de ellos operan como 

cajas negras, dificultando la comprensión de las relaciones entre variables y la lógica interna 

que conduce a una predicción específica. En entornos clínicos, donde las decisiones 

requieren justificación y trazabilidad, esta opacidad metodológica limita su adopción, ya que 

la ausencia de explicaciones claras reduce la confianza de los profesionales y plantea 

desafíos éticos y regulatorios (40,41). 

 

Los clasificadores interpretables, como los árboles de decisión, las listas de reglas y los 

modelos basados en patrones de alta utilidad, buscan equilibrar rendimiento predictivo y 

transparencia. Estos modelos permiten comprender explícitamente cómo contribuye cada 

variable al proceso de clasificación, facilitando auditorías clínicas, detección de sesgos y la 

justificación de decisiones individuales. Estudios recientes han demostrado que enfoques 

híbridos, que combinan clasificadores complejos con módulos explicativos, pueden 

maximizar la fidelidad y minimizar la complejidad, generando explicaciones comprensibles 

sin sacrificar precisión. Métodos como LIME, SHAP y las listas de reglas optimizadas han 

adquirido relevancia al ofrecer explicaciones locales y globales aplicables incluso a modelos 

profundamente no lineales (42). 

 

En el contexto sanitario, la interpretabilidad adquiere un valor adicional: permite integrar el 

razonamiento clínico humano con las salidas del modelo algorítmico. Esta sinergia es 

fundamental cuando se trabaja con decisiones sensibles como la predicción de estancias 
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prolongadas u outliers superiores, donde múltiples dimensiones clínicas, comorbilidades, 

gravedad inicial, variabilidad diagnóstica, interactúan de forma compleja y frecuentemente 

no observable en la admisión. En consecuencia, la interpretabilidad no solo mejora la 

utilidad del modelo, sino que fortalece la seguridad, reproducibilidad y aceptabilidad 

institucional, asegurando que los modelos predictivos actúen como herramientas 

complementarias y no sustitutos del juicio clínico. 

 

3.3. Problema 

El porcentaje de outliers superiores constituye un indicador relevante para la identificación 

de ineficiencias o dificultades en el proceso de atención hospitalaria, ya que estos casos, 

definidos por estancias significativamente mayores a las esperadas según su GRD, suelen 

asociarse a complicaciones clínicas, retrasos diagnósticos o terapéuticos, fallas en la 

coordinación interservicios o limitaciones operativas de la institución. No obstante, el 

sistema GRD presenta una limitación estructural: su carácter retrospectivo. La clasificación 

y validación del GRD se realiza únicamente al momento del egreso hospitalario, de modo 

que la identificación de un paciente como outlier superior ocurre cuando la prolongación de 

la estancia ya se ha producido, dificultando una intervención temprana y reduciendo las 

oportunidades para modificar favorablemente su evolución. 

 

En este contexto, la detección precoz de pacientes con riesgo de convertirse en outliers 

superiores adquiere un valor estratégico para la gestión clínica y administrativa. Anticipar 

esta condición desde el ingreso permitiría monitorear de manera continua el curso de la 

hospitalización, reconocer desviaciones tempranas en el proceso asistencial y activar 

intervenciones oportunas orientadas a optimizar la atención. Asimismo, el desarrollo de 

herramientas predictivas basadas en datos clínicos y administrativos disponibles desde el 

ingreso podría disminuir la ocurrencia de estancias excesivamente prolongadas, mejorar la 

eficiencia institucional y contribuir a un modelo de gestión hospitalaria más dinámico, 

preventivo y centrado en el paciente. 
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4. HIPÓTESIS 

Se plantea como hipótesis que el uso precoz de información de la base de datos GRD del 

HCUCH con la información disponible en el registro clínico electrónico (RCE) los Datos de 

Atención en Urgencia (DAU), permitiría anticipar la identificación de pacientes con riesgo 

de convertirse en outliers superiores. Este enfoque propone una detección precoz, entendida 

como la capacidad de predecir dicha condición antes de la admisión hospitalaria (Fig N° 

02), es decir, utilizando exclusivamente los antecedentes clínicos, administrativos y 

demográficos obtenidos durante el proceso de atención en urgencia. 

 

 

Figura N° 02 Flujo asistencia del paciente que ingresa a urgencia 
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5. OBJETIVOS 

 

5.1. Objetivo General 

OG. Identificar precozmente los outliers superiores mediante el análisis de la base de datos 

GRD y RCE del HCUCH. 

 

5.2. Objetivos Específicos 

OE1. Comprender el proceso de clasificación GRD del HCUCH. 

OE2. Describir la base de datos GRD y caracterizar sus variables demográficas, clínicas y 

administrativas, identificando patrones asociados a estancia hospitalaria prolongada. 

OE3. Identificar factores de riesgo asociados a outliers superiores mediante análisis conjunto 

de la base de datos GRD y RCE del HCUCH. 

OE4. Comparar modelos predictivos basados en algoritmos de aprendizaje automático que 

permitan anticipar, desde la atención de urgencia, a los pacientes con mayor riesgo de 

transformarse en outliers superiores. 

OE5. Identificar y analizar los factores que dificultan y limitan la capacidad predictiva de 

los modelos predictivos comparados para la predicción de outliers superiores. 
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6. METODOLOGÍA 

 

6.1. Diseño del estudio 

Estudio observacional, retrospectivo y analítico, basado en el uso de las bases de datos 

institucionales del HCUCH (GRD y DAU). Se llevó a cabo un análisis descriptivo y 

predictivo de los egresos hospitalarios correspondientes a los años 2018, 2019 y 2022, con 

el propósito de desarrollar un modelo capaz de identificar de manera temprana a los 

pacientes con riesgo de convertirse en outliers superiores 

 

6.2. Población y muestra 

- Población: se incluyeron todos los egresos hospitalarios del Hospital Clínico de la 

Universidad de Chile (HCUCH) codificados mediante GRD, cuya admisión se efectuó a 

través del Servicio de Urgencia. 

- Criterios de inclusión: pacientes de 15 años o más que ingresaron por el Servicio de 

Urgencia y contaron con codificación GRD asociada al episodio hospitalario. 

- Criterios de exclusión: se excluyeron los egresos correspondientes a los años 2020 y 

2021, así como hospitalizaciones obstétricas, pediátricas, programadas o aquellas sin 

codificación GRD válida. 

- Tamaño muestral: la cohorte final estuvo constituida por 13.760 egresos hospitalarios, 

correspondientes a los años 2018, 2019 y 2022. 

 

6.3. Fuentes de información y variables 

- Fuentes de información: se utilizaron la base de datos GRD junto con los DAU 

correspondientes a los años 2018 al 2022, de los registros clínicos electrónicos 

institucionales del sistema RCE TiCares. 

- Variables: El examen de su estructura interna, obtenido mediante la función df.info(), 

evidencia la presencia de 27 variables de tipo entero (int64), 35 variables numéricas de 

punto flotante (float64) y 91 variables de tipo objeto (object). Estas últimas corresponden 

principalmente a datos textuales, categorías codificadas y campos derivados de registros 

clínicos o administrativos, incluyendo posibles formatos de fecha. Las variables 

seleccionadas fueron 15 y están agrupadas en tres dominios principales demográficas, 

administrativas y clínicas (Tabla N° 01): 
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Tabla N° 01: Clasificación de variables 

 

 

6.4. Calidad de datos 

La literatura especializada destaca que la reutilización de datos provenientes de registros 

electrónicos de salud requiere una evaluación sistemática de su calidad. La calidad de los 

datos es esencial para garantizar la validez de los análisis basados en registros clínicos, 

especialmente en estudios predictivos. Según Weiskopf y Weng (2013), la calidad debe 

evaluarse considerando cinco dimensiones clave: completitud, corrección, concordancia, 

plausibilidad y vigencia (43). 

 

Dado que errores en la integridad, consistencia o completitud pueden sesgar estimaciones, 

aumentar la incertidumbre y deteriorar el rendimiento real de los modelos, se implementó 

un proceso sistemático de evaluación de calidad de datos, siguiendo principios establecidos 

en la literatura de ingeniería de datos, informática médica y ciencias de la salud. 

 

Con este propósito, se desarrolló una estrategia estructurada basada en el paradigma de 

validación por expectativas, enfoque ampliamente utilizado en herramientas modernas de 

aseguramiento de calidad como Great Expectations (GX), que es un framework de 

validación de datos ampliamente utilizado para garantizar la calidad, consistencia y 

DATOS VARIABLES DE INTERÉS
Sexo
Edad
Nacionalidad
Comuna
Servicio que ingresa desde la urgencia
Tipo de previsión
Triage
Presión arterial sistólica (PAS)
Presión arterial diastólica (PAD)
Presión arterial media (PAM)
Frecuencia cardíaca (FC)
Saturación de oxígeno (SatO2)
Frecuencia respiratoria (FR)
Escala de Glasgow
Diagnóstico de urgencia CIE 10

Demográficos

Administrativos

Clínicos
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confiabilidad de los dataset antes de su uso analítico. Su enfoque se basa en la definición 

explícita de “expectativas”, es decir, reglas formales que describen el comportamiento 

esperado de cada variable, como rangos válidos, formatos, dominios o relaciones entre 

columnas.(44)  

 

Siguiendo este marco conceptual, las validaciones se implementaron mediante 

procedimientos programáticos en Python, estructurados según los principios de la 

metodología GX, la cual permite definir expectativas explícitas y reproducibles sobre el 

comportamiento esperado de las variables. Las evaluaciones se organizaron en tres 

dimensiones analíticas principales: completitud, plausibilidad de valores (rangos) y 

consistencia de dominios categóricos.  

 

- Evaluación de completitud: La completitud se refiere a la proporción de datos 

efectivamente registrados en relación con el total esperado para cada variable. En 

investigaciones clínicas, este aspecto es fundamental, ya que los valores faltantes pueden 

ser indicativos de inconsistencias en el registro, variaciones entre unidades de atención, 

fallas en los sistemas de captura o problemas de integración entre las distintas fuentes de 

datos. Evaluar la completitud permite identificar variables críticas con niveles 

inadmisibles de ausencia, orientar estrategias de imputación y prevenir sesgos derivados 

del análisis de datos incompletos. 

 

- Evaluación de rangos plausibles: La evaluación de rangos plausibles consiste en verificar 

que los valores numéricos se ubiquen dentro de intervalos fisiológicos, administrativos 

o clínicamente razonables. Este control es esencial para detectar errores de digitación, 

cifras incompatibles con la fisiología humana, valores productos de fallas del 

equipamiento o registros imposibles desde el punto de vista asistencial. La validación de 

rangos asegura que el dataset mantenga coherencia interna y evita que datos aberrantes 

distorsionen los análisis descriptivos y afecten el desempeño de los modelos predictivos. 

Este enfoque es especialmente relevante en variables como signos vitales, edad, 

parámetros clínicos y valores derivados de mediciones instrumentales. 

 

- Evaluación de dominios y consistencia categórica: La evaluación de dominios y 

consistencia categórica tiene por objetivo garantizar que las variables clasificadas como 
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categóricas presenten únicamente valores válidos dentro de un conjunto predefinido. 

Este análisis permite detectar categorías erróneas, etiquetas inconsistentes, 

codificaciones obsoletas o variaciones en la nomenclatura que puedan comprometer la 

interpretación de la información. La consistencia categórica es crucial en registros 

clínicos donde categorías como triage, sexo, previsión, códigos diagnósticos o unidades 

de ingreso deben mantenerse uniformes y estandarizadas. Validar los dominios asegura 

que las categorías sean comparables y semánticamente coherentes, evitando problemas 

en la generación de tablas, cruces estadísticos y modelos predictivos basados en variables 

nominales. 

 

6.5. Definición operacional de outlier superior: 

Los outliers superiores corresponden a aquellos pacientes cuya estancia hospitalaria excede 

el punto de corte superior definido para su respectivo GRD.  

 

Este umbral se calcula mediante la fórmula: 

 

 

 

Donde P75 y P25 representan los percentiles 75 y 25 de la distribución de estancias para ese 

GRD.  

Este criterio se encuentra estandarizado en la Norma Técnica MINSAL 2018–2019 para 

GRD-IR(9), que establece dicha fórmula estadística para outliers superiores. 

 

6.6. Preprocesamiento de datos 

El preprocesamiento de datos se realizó mediante un protocolo sistemático para asegurar la 

calidad y coherencia de la información. Se identificaron y corrigieron errores, duplicados y 

valores imposibles, estandarizando variables demográficas, administrativas y clínicas. Se 

verificaron rangos fisiológicos, se homogenizaron categorías y se manejaron datos faltantes 

mediante imputación o exclusión. Con pandas y numpy se normalizaron y codificaron las 

variables, generando además nuevas categorías derivadas para mejorar la interpretabilidad. 

Posteriormente, se aplicó un análisis descriptivo y comparativo entre inliers y outliers, 

complementado con cálculos de odds ratios e intervalos de confianza, identificando factores 

asociados al riesgo de estancia prolongada. 

Outliers superiores = (P75)+ (1,5 x [P75-P25]) 
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6.7. Modelos predictivos 

Con el propósito de estimar la probabilidad de que un paciente se constituya en un outlier 

superior desde el momento de su ingreso hospitalario, se implementaron modelos 

supervisados de aprendizaje automático (machine learning). La predicción temprana de 

outliers superiores representa un desafío metodológico relevante, dada la naturaleza 

multifactorial de los procesos asistenciales y el marcado desbalance en la distribución de 

clases. Se describen los algoritmos utilizados, la estrategia de entrenamiento y validación 

temporal, los criterios de selección de variables y las métricas empleadas para evaluar el 

rendimiento de cada modelo. 

- Algoritmos de Aprendizaje Automático Evaluados: Se evaluó un conjunto de algoritmos 

supervisados, seleccionados por su uso extendido en predicción clínica y por su robustez 

ante diversos tipos de datos. Los modelos implementados fueron: 

o Regresión Logística 

o Random Forest 

o XGBoost 

o LightGBM 

o Support Vector Classifier (SVC) 

o Naive Bayes 

o Red Neuronal Multicapa (MLP) 

 

El problema presenta un desequilibrio notable de clases, con una proporción sustancialmente 

menor de pacientes clasificados como outliers superiores. Para enfrentar esta situación y 

mejorar la sensibilidad hacia la clase minoritaria, todos los algoritmos fueron implementados 

en sus versiones ajustadas para datos desbalanceados (imbalance-aware). Según el 

algoritmo, se utilizaron estrategias como class_weight, scale_pos_weight, sample_weight o 

priors, lo que permitió penalizar de manera diferencial los errores en la clase minoritaria y 

evitar el sesgo hacia la clase mayoritaria. 

 

- Estrategia de Entrenamiento y Validación Temporal: El proceso de entrenamiento utilizó 

los egresos hospitalarios correspondientes a los años 2018 y 2019, los cuales representan 

el 63,3 % del total de registros disponibles y corresponden a un período pre-pandemia 
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caracterizado por una distribución estable de diagnósticos, flujos asistenciales y 

condiciones operativas del hospital. 

 

La cohorte de validación se conformó con los datos del año 2022, que representan el 36,7 % 

de los registros. Este período posterior a la pandemia de COVID-19 se caracteriza por 

cambios epidemiológicos, organizacionales y en la demanda asistencial, lo que constituye 

un conjunto temporalmente independiente y exigente para evaluar la capacidad de 

generalización del modelo. 

 

La elección de esta estrategia de validación temporal responde a la necesidad de simular un 

escenario real de implementación, donde el modelo se entrena con datos históricos y debe 

mantener su desempeño ante pacientes de períodos futuros. Esta separación estricta por año 

evita el sobreajuste y previene el data leakage, permitiendo evaluar la estabilidad del modelo 

frente a variaciones en la casuística y en la complejidad de los episodios hospitalarios. 

 

- Selección de Variables: La selección de predictores se realizó mediante un método de 

Forward Selection, que evalúa secuencialmente el aporte incremental de cada variable 

al rendimiento del modelo. Este enfoque permite construir modelos más parsimoniosos, 

reduciendo la complejidad, la redundancia y la colinealidad entre predictores, mientras 

se preserva la capacidad explicativa y predictiva del conjunto final de variables. Este 

método permitió identificar cuáles características aportaron mayor valor predictivo al 

modelo y cuáles generaban un efecto marginal o redundante. 

 

- Métricas de Desempeño: Para evaluar el rendimiento de los modelos se utilizaron las 

métricas más relevantes en contextos con desbalance de clases, entre ellas: 

o Precisión (Precision): proporción de predicciones positivas correctas. 

o Sensibilidad (Recall): capacidad del modelo para identificar correctamente a los 

outliers superiores (clase minoritaria). 

o F1-score: medida armónica entre precisión y sensibilidad, útil cuando existe 

asimetría en la distribución de clases. 

o Área Bajo la Curva ROC (AUC-ROC): indicador global del rendimiento 

discriminativo del modelo. 
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Estas métricas permiten un análisis integral tanto del comportamiento global como 

del desempeño específico sobre la clase de mayor interés clínica. 

 

- Tratamiento del Desbalance de Clases: Debido a que los outliers superiores representan 

únicamente el 4,6 % de la cohorte total, se implementaron técnicas de sobre-muestreo 

para mitigar el sesgo inherente hacia la clase mayoritaria. Se utilizaron métodos 

ampliamente validados en la literatura, tales como: 

o SMOTE (Synthetic Minority Over-sampling Technique) 

o SMOTEENN (SMOTE + Edited Nearest Neighbors) 

o ADASYN (Adaptive Synthetic Sampling) 

 

Estas técnicas generan muestras sintéticas o combinadas de la clase minoritaria, reduciendo 

la tendencia de los modelos a predecir exclusivamente la clase mayoritaria y mejorando la 

capacidad de detección de los pacientes con riesgo aumentado de estancia prolongada. 

 

El análisis de explicabilidad se apoyó en la interpretación de los coeficientes, probabilidades 

condicionales o pesos internos según el algoritmo, permitiendo describir de qué manera las 

variables seleccionadas influyen en la probabilidad de que un paciente se clasifique como 

inlier u outlier superior. Este enfoque orientado a la importancia de los predictores 

proporciona una comprensión transparente del comportamiento del modelo y facilita la 

interpretación clínica de los factores asociados a estancias hospitalarias prolongadas. 

 

6.8. Aspectos éticos y manejo de datos: 

El estudio se desarrolló en estricto cumplimiento de las políticas institucionales del HCUCH 

relativas a la protección de datos personales, confidencialidad de la información clínica y 

resguardo ético de los participantes. Para su ejecución, se utilizaron exclusivamente datos 

previamente anonimizados, sin posibilidad de identificación directa o indirecta de los 

pacientes. Asimismo, el protocolo fue revisado y aprobado por el Comité de Ética Científico 

del HCUCH, contando con su autorización formal emitida el 14 de junio de 2023, fecha en 

que se otorgó la aprobación ética correspondiente para la realización de la investigación 

(Anexo N° 03). 
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6.9. Software y entorno 

El análisis cuantitativo y el procesamiento de los datos se realizaron empleando Python 3.11, 

junto con un conjunto de bibliotecas especializadas ampliamente utilizadas en investigación 

científica y en el desarrollo de modelos de aprendizaje automático. Para la gestión y 

manipulación de los datos se utilizaron pandas y numpy, mientras que matplotlib y seaborn 

se emplearon para la generación de visualizaciones descriptivas y análisis exploratorios. La 

construcción, entrenamiento y evaluación de modelos clásicos de machine learning se 

efectuó mediante scikit-learn, y el desarrollo de arquitecturas basadas en redes neuronales 

se llevó a cabo utilizando TensorFlow. 

 

Todo el flujo de trabajo analítico, desde la depuración de los datos hasta la implementación 

de los modelos predictivos, se ejecutó en el entorno de desarrollo Visual Studio Code (VS 

Code) versión 2, el cual facilitó una integración eficiente de las herramientas de 

programación, control de versiones y visualización, asegurando un proceso reproducible, 

ordenado y metodológicamente coherente. 
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7. RESULTADOS 

 

7.1. Comprender el proceso de clasificación GRD del HCUCH (OE1) 

El proceso de asignación del código GRD a un paciente hospitalizado constituye una etapa 

clave para la estandarización y evaluación de los episodios de atención. Este procedimiento 

se inicia desde el momento mismo de la admisión del paciente al hospital, instancia en la 

que se registran los datos administrativos esenciales, tales como edad, sexo, fecha de ingreso 

y servicio clínico responsable. Paralelamente, durante la hospitalización se genera y 

consolida información clínica mediante sistemas institucionales, destacando el RCE en el 

HCUCH, el sistema TiCares y la hoja de alta médica (epicrisis), donde se documentan 

diagnósticos, procedimientos, evolución clínica y condiciones al egreso. Una vez 

completado el proceso de hospitalización, los registros administrativos y clínicos son 

integrados, permitiendo la generación final del código GRD correspondiente a cada episodio 

(Figura N°03). 

 

Los algoritmos de agrupación GRD tienen su origen en un marco conceptual común, 

evolucionando progresivamente desde los HCFA-DRGs desarrollados en 1983 en Estados 

Unidos, hasta los sistemas IR-DRGs (International Refined Diagnosis Related Groups) 

introducidos en el año 2000. A lo largo del tiempo, estos sistemas han sido adaptados para 

responder a las necesidades epidemiológicas, organizacionales y financieras de distintos 

países. En Chile, el sistema adoptado es el IR-GRD versión 3.0, utilizado tanto en el sector 

público como privado, y que permite codificar episodios de atención ambulatoria y 

hospitalaria según una clasificación clínicamente coherente y comparable a nivel 

internacional. 

 

La correcta asignación de un GRD requiere la integración de datos administrativos y datos 

clínicos, los cuales alimentan el Conjunto Mínimo Básico de Datos (CMBD). Este conjunto 

constituye la estructura central donde se recopila información clave del episodio, incluyendo 

diagnósticos principales y secundarios registrados según la Clasificación Internacional de 

Enfermedades, CIE-10, así como la identificación de complicaciones ocurridas durante la 

hospitalización. Del mismo modo, se codifican los procedimientos médicos efectuados, 

utilizando la clasificación CIE-9-MC, lo que permite caracterizar la complejidad asistencial 

y la intensidad del uso de recursos. 
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Una vez consolidada toda esta información, el sistema de agrupación determina el GRD 

final, el cual sintetiza el episodio hospitalario desde una perspectiva clínica y administrativa, 

atribuyendo a cada caso una categoría que refleja su diagnóstico principal, comorbilidades, 

severidad y procedimientos asociados. Esta clasificación no solo permite comparar 

episodios entre pacientes, unidades o instituciones, sino que constituye una herramienta 

fundamental para la gestión hospitalaria, la planificación de recursos y la evaluación de 

desempeño. 

 

Finalmente, el GRD asignado es almacenado en plataformas de gestión de datos, como 

Oracle Business Intelligence, donde queda disponible para análisis clínico, auditorías, 

estudio de indicadores, proyecciones financieras y procesos de mejora continua. Este flujo 

de información estructurado garantiza la estandarización de la codificación, fortalece la 

calidad del registro clínico y contribuye a una toma de decisiones informada en los distintos 

niveles de gestión en salud.



 

Fig N° 03: Proceso de obtención de la codificación GRD. 

 



 

7.2. Describir la base de datos GRD y caracterizar sus variables, identificando patrones 

asociados a estancia hospitalaria prolongada (OE2). 

 

7.2.1. Descripción base de datos GRD y DAU del HCUCH 

La base de datos GRD y DAU analizado, corresponde a una base de datos estructurada de 

tipo tabular. Está conformado por 13.760 registros (observaciones) y 153 atributos 

(variables), lo que refleja un volumen considerable de información clínica y administrativa 

asociada a episodios hospitalarios. 

 

El examen de su estructura interna, obtenido mediante la función df.info(), evidencia la 

presencia de 27 variables de tipo entero (int64), 35 variables numéricas de punto flotante 

(float64) y 91 variables de tipo objeto (object). Estas últimas corresponden principalmente 

a datos textuales, categorías codificadas y campos derivados de registros clínicos o 

administrativos, incluyendo posibles formatos de fecha. 

 

7.2.2. Evaluación de la calidad de datos  

Para la evaluación de la calidad de los datos se empleó la metodología proporcionada por 

Great Expectations (GX), una librería de Python orientada a la validación automatizada y 

estandarizada de conjuntos de datos. Este enfoque permitió definir y aplicar reglas 

explícitas de calidad sobre las variables incluidas en el estudio, organizadas en estas 

dimensiones: completitud (presencia de datos esperados), plausibilidad de rangos 

(verificación de valores dentro de intervalos fisiológicos o administrativos coherentes), 

evaluación de dominios (corroboración de que las categorías corresponden a conjuntos 

válidos y predefinidos) y consistencia categórica (uniformidad y coherencia interna en 

etiquetas y clasificaciones). La aplicación sistemática de estas validaciones facilitó la 

identificación de anomalías, la estandarización del dataset y la garantía de su integridad 

previa al análisis estadístico y predictivo. 

 

- Evaluación de completitud: Se evaluaron variables demográficas (sexo, edad, 

nacionalidad y comuna), administrativas (servicio de ingreso y tipo de previsión) y 

clínicas (frecuencia cardíaca, saturación de oxígeno, presión arterial, frecuencia 

respiratoria, puntaje de Glasgow). Para cada variable se calculó: 

• Número absoluto de datos faltantes. 



 42    
  

• Porcentaje relativo respecto del total 

• Cumplimiento de un umbral de aceptabilidad de ≤5%, definido siguiendo 

recomendaciones de la literatura en ciencia de datos clínicos y análisis de 

registros electrónicos. 

 

La validación se implementó mediante reglas automatizadas equivalentes a la 

expectativa expect_column_values_to_not_be_null de GX, permitiendo detectar 

variables con potencial riesgo de sesgo o que requerían imputación, revisión de origen 

o exclusión. 

   

- Evaluación de rangos plausibles: Para garantizar que los valores registrados fueran 

consistentes con la fisiología humana y con las características esperadas del proceso 

asistencial, se establecieron intervalos de plausibilidad para variables numéricas. Estos 

rangos se definieron en base a literatura clínica, parámetros fisiológicos normalizados 

y experiencias metodológicas de auditoría de datos en hospitales de alta complejidad. 

Ejemplos de rangos definidos: 

• Edad: 15–110 años 

• Frecuencia cardíaca: 20–220 lpm 

• Frecuencia respiratoria: 4–60 rpm 

• Saturación de oxígeno: 50–100% 

• Presión arterial sistólica: 50–260 mmHg 

• Glasgow: 3–15 puntos 

 

Los valores fuera de estos intervalos fueron clasificados como inválidos y 

cuantificados. La regla aplicada fue equivalente al método 

expect_column_values_to_be_between utilizado por GX. Este procedimiento permitió 

identificar errores de digitación, artefactos de monitorización, registros incompletos y 

valores no plausibles que requerían revisión o depuración. 

 

- Evaluación de dominios y consistencia categórica: Se verificó que las variables 

categóricas contuvieran exclusivamente valores pertenecientes a conjuntos 

predefinidos, asegurando integridad semántica y coherencia analítica. Estas variables 
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son fundamentales para la estratificación y el modelamiento predictivo, por lo que su 

validación es esencial. Los dominios evaluados incluyeron: 

• outlier_sup: {0, 1} 

• triage: {I, II, III, IV, V} 

• año: {2018, 2019, 2022} 

• sexo: {1, 2} (equivalentes a masculino/femenino según codificación 

institucional) 

 

La regla empleada fue análoga a expect_column_values_to_be_in_set de GX. Este 

paso permitió identificar inconsistencias de codificación, errores en la integración de 

fuentes o categorías no reconocidas que podían afectar el modelado posterior. 

 

- Integración y reporte sistematizado: Tras ejecutar las validaciones en las tres 

dimensiones anteriores, se consolidaron los resultados en un reporte unificado que 

clasificó cada variable según: 

• cumplimiento o incumplimiento de las reglas definidas, 

• porcentaje de completitud, 

• número y proporción de valores fuera de rango, 

• porcentaje de categorías inválidas. 

 

La Tabla N° 02 muestra un resumen estructurado de la calidad de los datos, organizado en 

tres dimensiones fundamentales: completitud, rangos plausibles y dominio/consistencia 

categórica, siguiendo una metodología de validación similar a la implementada mediante 

GX. Se registró una alta completitud en los datos, lo cual es fundamental para evitar 

sesgos, pérdida de información y necesidad excesiva de imputación. La presencia de 

valores fuera de rango sugiere errores de digitación, fallas de equipos, registros mal 

ingresados o situaciones clínicas extremas, lo que requiere corrección, exclusión o 

verificación antes del análisis. Las variables categóricas presentan excelente integridad 

semántica, sin codificaciones erróneas ni categorías fuera de los valores esperados. 
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Tabla N° 02: Resumen de la evaluación de la calidad de datos 

 
 

7.2.3. Preprocesamiento y análisis de datos 

El preprocesamiento de los datos se desarrolló siguiendo un protocolo sistemático 

orientado a garantizar la calidad, coherencia y utilidad analítica de las variables incluidas 

en el estudio. En primer lugar, se efectuó una revisión inicial para identificar errores 

estructurales, valores imposibles, duplicados y discrepancias en los registros. 

Posteriormente, se estandarizaron los formatos de todas las variables demográficas (edad, 

sexo, nacionalidad, residencia), administrativas (servicio de ingreso, previsión) y clínicas 

(triage, presión arterial, frecuencia cardíaca, frecuencia respiratoria, saturación de 

oxígeno, Glasgow y diagnóstico CIE-10). Para las variables numéricas se verificaron 

rangos fisiológicos plausibles, corrigiendo o excluyendo valores inconsistentes según 

criterios clínicos. En las variables categóricas se homogeneizaron etiquetas y se agruparon 

categorías poco frecuentes para mejorar la estabilidad estadística. 

 

Variable de interés Detalle n° de datos faltantes % de datos faltantes n° de datos inválidos % de datos inválidos

outlier_sup NA ≤ 5.0% 0 0 0 0
sexo NA ≤ 5.0% 0 0 0 0
edad NA ≤ 5.0% 0 0 0 0
nacionalidad NA ≤ 5.0% 4 0,03 0 0
comuna NA ≤ 5.0% 2 0,01 0 0
servicio NA ≤ 5.0% 0 0 0 0
tipo_prevision_ok NA ≤ 5.0% 0 0 0 0
triage NA ≤ 5.0% 0 0 0 0
pas NA ≤ 5.0% 0 0 0 0
pad NA ≤ 5.0% 0 0 0 0
pam NA ≤ 5.0% 0 0 0 0
sat NA ≤ 5.0% 0 0 0 0
fc NA ≤ 5.0% 0 0 0 0
fr NA ≤ 5.0% 0 0 0 0
glasgow NA ≤ 5.0% 0 0 0 0
cod_urg_cie10 NA ≤ 5.0% 0 0 0 0

edad [15,110] 0 0 0 0
fc [20,220] 0 0 329 2,39
fr [4,60] 0 0 1819 13,22
glasgow [3,15] 0 0 930 6,76
pad [10,200] 0 0 398 2,89
pam [20,200] 0 0 377 2,74
pas [50,260] 0 0 381 2,77
sat [50,100] 0 0 352 2,56

ano {2018,2019,2022} 0 0 0 0
outlier_sup {0,1} 0 0 0 0
sexo {1,2} 0 0 0 0
triage {'I','II','III','IV','V'} 0 0 0 0

SEGÚN COMPLETITUD

SEGÚN RANGOS PLAUSIBLES

SEGÚN DOMINIO Y CONSISTENCIA CATEGÓRICA
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El proceso de limpieza y normalización de datos se realizó utilizando las bibliotecas 

pandas y numpy de Python, las cuales permitieron gestionar eficientemente grandes 

volúmenes de información clínica y administrativa. El manejo de datos faltantes se realizó 

mediante el análisis de su patrón de ausencia, aplicando imputación o exclusión según el 

porcentaje y relevancia clínica de la variable. Asimismo, se generaron nuevas variables 

derivadas, por ejemplo, triage dicotomizado, previsión recodificada y región de residencia 

agrupada, con el fin de optimizar la interpretabilidad y reducir la colinealidad. Finalmente, 

se llevó a cabo una normalización y codificación adecuada para los algoritmos de 

aprendizaje automático, garantizando que todas las variables ingresaran al modelamiento 

en un formato estructurado, estandarizado y listo para análisis predictivo. Si quieres, 

puedo adaptarlo exactamente a tu base de datos real línea por línea. 

 

Posteriormente, se llevó a cabo un análisis descriptivo univariado, orientado a caracterizar 

la distribución de las variables y comparar sistemáticamente a los pacientes clasificados 

como inliers versus aquellos identificados como outliers superiores. Para ello, se 

utilizaron medidas de tendencia central y dispersión, así como pruebas de hipótesis 

apropiadas según la naturaleza de las variables (pruebas t, U de Mann–Whitney, chi 

cuadrado o exacta de Fisher), con el fin de identificar diferencias estadísticamente 

significativas entre ambos grupos. 

 

Adicionalmente, se exploró la fuerza de asociación entre variables clínicas, demográficas 

y administrativas mediante el cálculo de odds ratios (OR) y sus respectivos intervalos de 

confianza al 95%, complementado con la estimación de valores p para determinar la 

significancia estadística. Este enfoque permitió identificar factores relacionados con la 

probabilidad de constituirse como outlier superior, aportando evidencia cuantitativa 

relevante para la construcción posterior de los modelos predictivos. 

 

7.2.4. Transformaciones de variables 

Se seleccionaron 15 variables, que se encontraban disponibles al momento del ingreso 

hospitalario. Se clasificaron en 3 dominios: demográficos, administrativos y clínicos. 

Algunas variables fueron transformadas para mejorar su interpretación y comparabilidad 

(Tabla N° 03):  
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- En el dominio demográfico, la variable nacionalidad fue recodificada en dos 

categorías: chilena y extranjera. Asimismo, la variable comuna de residencia se 

transformó en una clasificación dicotómica que distingue entre Región Metropolitana 

y otras regiones, con el fin de simplificar su análisis y mejorar la interpretabilidad de 

los resultados. 

- En el dominio administrativo, la variable servicio de ingreso fue recodificada 

agrupando las distintas unidades hospitalarias en categorías analíticamente más 

manejables. Por su parte, la variable tipo de previsión se transformó en una 

clasificación dicotómica compuesta por FONASA y Otras previsiones, con el 

propósito de simplificar su interpretación y facilitar su uso en los análisis posteriores. 

- En el dominio clínico, se aplicaron transformaciones más específicas. La variable 

triage fue recodificada en dos grupos clínicamente relevantes: alto (niveles I y II, 

correspondientes a mayor gravedad) y no alto (niveles III, IV y V). Esta 

transformación binaria permite capturar el riesgo inicial del paciente de manera más 

simple y analíticamente manejable. Asimismo, la variable CIE-10 de urgencia fue 

reorganizada agrupando distintos códigos diagnósticos en categorías más amplias, 

según sistemas, síndromes o grupos etiológicos, con el fin de evitar una alta dispersión 

de categorías y mejorar la estabilidad estadística del modelo. 

 

Tabla N° 03: Variables y transformaciones 

 

 

Tipo de Variable Variable de interés Transformaciones
Sexo No
Edad No
Nacionalidad Chileno/Extranjero
Comuna RM/Regiones

Servicio que ingresa desde la urgencia No

Tipo de previsión FONASA/Otras
Triage Alto (I y II) y no alto (III, IV, V) 
Presión arterial sistólica (PAS) No
Presión arterial diastólica (PAD) No
Presión arterial media (PAM) No
Frecuencia cardíaca (FC) No
Saturación de oxígeno (SatO2) Sat baja (< 90%), Sat >= 90%
Frecuencia respiratoria (FR) No
Escala de Glasgow Glasgow bajo (<15), Glasgow 15
Diagnóstico de urgencia CIE 10 No

Demográficos

Administrativos

Clínicos
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7.2.5. Análisis descriptivo y univariado 

Se realizó un análisis descriptivo de la base de datos GRD del HCUCH, considerando 

un total de 13.760 egresos hospitalarios codificados entre los años 2018, 2019 y 2022. 

En virtud de la heterogeneidad de los pacientes, enfermedades y capacidad de 

predecir la posibilidad de ser outlier superior con la información disponible al ingreso 

de hospitalización, se decidió que se incluirán los pacientes con edad igual o mayor 

de 15 años y que hayan ingresado por el servicio de urgencias del HCUCH.   

  

Para identificar a los pacientes con estancias hospitalarias prolongadas, se utilizó 

como referencia el umbral superior estadístico definido:  

 

 

 

Esta fórmula es una definición estática que corresponde al criterio establecido en la 

Norma MINSAL 2018–2019 GRD IR para la determinación de outliers superiores 

según cada GRD específico. La fórmula se aplicó a los egresos hospitalarios del 

HCUCH correspondientes a los años 2018, 2019 y 2022 de pacientes ingresados por 

el servicio de urgencia. Con base en este análisis que contribuye a sugerir factores de 

riesgo y protectores. Se consideró estancia prolongada aquella igual o superior a 23 

días.   

 

Aplicando este criterio a la base de datos, se identificó un subgrupo de pacientes con 

estancias prolongadas (estancia hospitalaria igual o mayor a 23 días), que incluyó 

1224 casos, que representan el 8,9% de los casos.   

   

 En el conjunto de datos se identificaron 568 códigos GRD únicos, lo que refleja una 

marcada heterogeneidad diagnóstica en la población estudiada.  

 

A continuación, se presentan las principales características de esta cohorte, 

organizadas en tres dimensiones: demográficas, administrativas y clínicas (Tabla N° 

04)  

    

 

Estancia hospitalaria prolongada = (P75)+ (1,5 x [P75-P25]) 
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Tabla N° 04: Comparación de variables demográficas, administrativas y clínicas 

según duración de la hospitalización (< 23 días vs ≥ 23 días).  

  
  

 

 

 

 

 

 

Variables  EH < 23 días EH ≥ 23 días p-value 
N  12.536 1.224  
Edad, median (IQR)  63 (46;75) 68 (57;78) <0,001* 
Sexo    0,711
 Masculino 6.326 (50,5%) 625 (51,1%)  
 Femenino 6.210 (49,5%) 599 (48,9%)  
Nacionalidad    0,033* 
 Chileno 12.397 (98,9%) 1.202 (98,2%)  
 Extranjero 135 (1,1%) 22 (1,8%)  
Residencia    <0,001* 
 R. Metropolitana 12.043 (96,1%) 1.135 (92,7%)  
 Otras regiones 493 (3,9%) 89 (7,3%)  
Tipo de previsión    <0,001* 
 Fonasa 7.631 (60,9%) 815 (66,6%)  
 Isapre/Particular 4.905 (39,1%) 409 (33,4%)  
Admisión    <0,001* 
 UPC 4.017 (32,0%) 740 (60,5%)  
 Otro servicio 8.519 (68,0%) 484 (39,5%)  
Triaje    <0,001* 
 Alto (I y II) 5.363 (42,8%) 718 (58,7%)  
 No alto (III, IV, V) 7.173 (57,2%) 506 (41,3%)  
pas, median (IQR)  132 (115;150) 124 (104;147) <0,001* 
pad, median (IQR)  78 (67;89) 72 (60;85) <0,001* 
pam, median (IQR)  96.7 (84.3;108.3) 90 (75.7;105.3) <0,001* 
fc, median (IQR)  88 (74;103) 93 (77.8;110) <0,001* 
fr, median (IQR)  18 (16;18) 18 (16;20) <0,001* 
sat, median (IQR)  97 (95;98) 96 (93;98) <0,001* 
glasgow, median (IQR)  15 (15;15) 15 (15;15) <0,001* 
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7.3. Identificar factores de riesgo asociados a outliers superiores mediante análisis 

conjunto de la base de datos GRD y RCE del HCUCH (OE3). 

  

7.3.1. Análisis de los outliers superiores e inliers 

Del total de 13.760 casos analizados, 632 pacientes fueron identificados como 

outliers superiores, lo que corresponde al 4,6% (Figura N° 04). Estos representan los 

egresos cuya duración de hospitalización excedió significativamente los valores 

esperados según su grupo GRD. Por otro lado, 13.128 pacientes, lo que equivale al 

95,4% fueron clasificados como inliers, es decir, su duración de estadía se mantuvo 

dentro del rango considerado normal. Esta distribución evidencia que los outliers 

superiores constituyen una minoría dentro de la población hospitalaria, lo que plantea 

desafíos metodológicos para su análisis y predicción, especialmente en el contexto 

de modelos de clasificación con clases desbalanceadas.  

 

Fig N° 04: Distribución de inliers y outliers superiores. HCUCH. 2018-1019-2022 

 

La duración de la estancia hospitalaria (en días) difiere entre pacientes clasificados 

como outliers superiores y pacientes inliers. Los outliers superiores tienen una 

mediana de estancia hospitalaria de 27 días, con un rango intercuartílico de 14 a 43 

días, observándose además valores extremos considerablemente más altos en este 

grupo. En contraste, los pacientes inliers presentan una mediana de 6 días, con un 

rango intercuartílico de 3 a 10 días. Los resultados revelan una diferencia 
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estadísticamente significativa entre ambos grupos, con un valor p<0,001. Esta 

diferencia sustancial en los días de hospitalización refuerza la definición operacional 

de outliers superiores como casos con estancia prolongada (Figura N° 05). 

  

Fig N° 05: Mediana estancia hospitalaria de inliers y outliers superiores.  

HCUCH. 2018-1019-2022 

 

 

Con respecto al punto de corte superior de los GRD, es decir, el umbral en días de 

hospitalización utilizado para definir a los outliers superiores, se observa una 

distribución marcadamente asimétrica hacia la derecha. La mayoría de los puntos de 

corte se concentra en estancias menores a 40 días. A partir del día 50 la distribución 

cae de manera considerable, quedando solo casos aislados y dispersos. Pese a ello, se 

identifican valores atípicos de gran magnitud, con puntos de corte que alcanzan hasta 

160 días.  

 

7.3.2. Análisis de los GRD con mayor outliers superiores 

La figura N° 06 se muestra los GRDs que concentran el mayor número de outliers 

superiores. Los tres GRDs con mayor frecuencia de outliers superiores son “PH 

procedimientos sobre amígdalas y adenoides” con 30 casos, lo que representa el 4,7 
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% de todos los outliers superiores, sigue “MH neumonía simple y tos ferina con 

comorbilidades mayores (W/MCC)” con 29 casos (4,6 %) y “PH ventilación 

mecánica prolongada sin traqueostomía W/MCC” con 12 casos (1,9 %). También 

destacan otros diagnósticos clínicos y quirúrgicos con entre 7 y 11 casos cada uno, 

como infecciones urinarias, insuficiencia cardíaca, dolor abdominal, falla 

respiratoria, infecciones respiratorias, septicemia, entre otros. Esta distribución 

evidencia que no son necesariamente los GRDs con mayor volumen total de casos 

los que concentran más outliers superiores, sino aquellos con mayor propensión a 

estancias hospitalarias prolongadas dentro de su categoría.   

 

Fig N° 06: Distribución de los 20 IR-GRD con mayor número de casos clasificados 

como outliers superiores (≥1 % del total), expresado en frecuencia absoluta y 

porcentaje. 
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La figura N° 07 muestra los GRDs que presentan un porcentaje igual o superior al 20 

% de outliers superiores, considerando únicamente aquellos con al menos 10 casos 

totales. El GRD con mayor proporción de outliers superiores es “PH procedimientos 

sobre amígdalas y adenoides” en el que 30 de los 34 casos (88,2 %) superaron el 

punto de corte superior de su GRD, luego “PH otros procedimientos sobre piel, tejido 

subcutáneo y mama”  con 50,0 % (7 de 14 casos) y “PH otros procedimientos sobre 

tejido conectivo y sistema musculoesquelético” con 43,5 % (10 de 23 casos). La 

relevancia de esto es que  algunos GRD, aunque menos frecuentes, presentan una alta 

probabilidad de generar estancias prolongadas.   

 

Fig N° 07: GRD con ≥20 % de casos clasificados como outliers superiores (n ≥ 10), 

según distribución porcentual. 

  
 

La mayoría de los pacientes clasificados como outliers superiores tienen un exceso 

de días relativamente bajo; cerca de la mitad acumula hasta 5 días adicionales. Sin 

embargo, también se observan casos extremos con excesos muy prolongados, incluso 
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superiores a los 100 o 200 días, aunque son infrecuentes. A medida que aumenta el 

número de días como outlier superior, la frecuencia disminuye progresivamente, lo 

que indica una distribución fuertemente sesgada a la derecha.  

  

7.3.3. Factores de riesgo asociados a outliers superiores 

El análisis de las variables disponibles de forma precoz muestra las siguientes 

asociaciones con la condición de outlier superior (Tabla N° 05):  

- Edad: Los pacientes clasificados como outliers superiores presentan una mediana 

de edad más alta (66 años [RIC 50;79]) en comparación con los inliers (63 años 

[RIC 47;76]), diferencia que resulta estadísticamente significativa (p = 0,002).  

- Sexo: La proporción de mujeres fue más alta entre los outliers superiores (53,3 

%) que entre los inliers (49,3 %), sin alcanzar significación estadística (p = 

0,053).  

- Nacionalidad: No se observaron diferencias significativas entre ambos grupos. 

La gran mayoría de los pacientes eran chilenos (casi 99 % en ambos), con un 

valor p = 0,912, lo que indica que la nacionalidad no se asocia a la condición de 

outlier superior.  

- Residencia: El 5,9 % de los pacientes outliers superiores provienen de regiones 

distintas a la Metropolitana, en comparación con el 4,2 % de los inliers. Esta 

diferencia se acerca a la significación estadística (p = 0,048), lo que sugiere que 

residir fuera de la Región Metropolitana podría estar relacionado con mayor 

riesgo de estancia prolongada.  

- Tipo de previsión: No se observaron diferencias significativas (p = 0,193). La 

proporción de pacientes FONASA fue algo mayor entre los outliers superiores 

(63,9 %) en comparación con los inliers (61,3 %).  

- Triaje: El 51,4 % de los outliers superiores fue clasificado con triaje de alta 

prioridad (niveles I–II), mientras que solo el 43,8 % de los inliers recibió esta 

clasificación. La diferencia fue estadísticamente significativa (p < 0,001), lo que 

sugiere una asociación entre mayor severidad al ingreso y evolución hacia outlier 

superior.  

- Presión arterial sistólica (PAS): No se observaron diferencias significativas en la 

mediana de la PAS entre ambos grupos (129 mmHg vs. 131 mmHg; p = 0,027).  
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o Aunque estadísticamente significativa, la diferencia es pequeña y de 

relevancia clínica limitada.  

- Presión arterial diastólica (PAD): Los outliers superiores presentaron valores 

significativamente menores de PAD (75 mmHg vs. 78 mmHg; p = 0,002).  

- Presión arterial media (PAM): La PAM fue también menor en los outliers 

superiores (94 mmHg vs. 96 mmHg; p = 0,006).  

- Frecuencia cardíaca (FC): La frecuencia cardíaca fue más alta en los pacientes 

outliers superiores (93 lpm [RIC 80;107]) en comparación con los inliers (88 lpm 

[RIC 74;103]), diferencia estadísticamente significativa (p < 0,001).  

- Frecuencia respiratoria (FR): Ambos grupos presentaron una mediana de 18 rpm, 

aunque la diferencia en la distribución fue significativa (p = 0,007), lo que sugiere 

que los outliers tienen mayor tendencia a frecuencias respiratorias elevadas.  

- Saturación de oxígeno (SatO₂): Aunque la mediana fue similar en ambos grupos, 

los pacientes clasificados como outliers superiores presentaron saturaciones 

ligeramente menores (97 % [94–98]) en comparación con los inliers (97 % [95–

98]). Esta diferencia, aunque pequeña, resultó estadísticamente significativa (p < 

0,001), lo que sugiere variaciones en la distribución de los valores entre ambos 

grupos. 

- Escala de Glasgow: A pesar de que la mediana fue idéntica en ambos grupos (15 

puntos), el análisis estadístico evidenció una diferencia significativa (p < 0,001). 

Esto indica que las distribuciones completas de los puntajes difieren entre outliers 

superiores e inliers, aun cuando el valor central no cambia. 
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Tabla N° 05: Comparación de variables demográficas, administrativas y clínicas 

entre inliers y outliers superiores  

 

 

La Tabla Nº 06 presenta la distribución de pacientes clasificados como outliers 

superiores según el servicio clínico de hospitalización al que fueron derivados desde 

urgencia. Los resultados evidencian que los servicios de Unidad de Pacientes Críticos 

(OR: 1,68), Otorrinolaringología (OR: 7,73) y Psiquiatría (OR: 4,75) mostraron odds 

ratios significativamente elevados, lo que indica una mayor probabilidad de que los 

pacientes ingresados a estas unidades se conviertan en outliers superiores. En 

contraste, los servicios de Cirugía (OR: 0,32), Unidad Coronaria (OR: 0,58) y 

Cardiología (OR: 0,34) presentaron odds ratios menores, reflejando una probabilidad 

reducida de constituirse como outliers superiores en comparación con el resto de los 

servicios clínicos.  

 

Variables  Inliers Outlier superior p-value 
N  13.128 632  
Edad, median (IQR)  63 (47;76) 66 (50;79) 0,002* 
Sexo     
 Masculino 6.656 (50,7%) 295 (46,7%) 0,053
 Femenino 6.472 (49,3%) 337 (53,3%)  
Nacionalidad    0,912
 Chileno 12.975 (98,9%) 624 (98,7%)  
 Extranjero 149 (1,1%) 8 (1,3%)  
Residencia    0,048* 
 R. Metropolitana 12.583 (95,8%) 505 (94,1%)  
 Otras regiones 545 (4,2%) 37 (5,9%)  
Tipo de previsión    0,193
 Fonasa 8.042 (61,3%) 404 (63,9%)  
 Isapre/Particular 5.086 (38,7%) 228 (36,1%)  
Triaje    <0,001* 
 Alto (I y II) 5.756 (43,8%) 325 (51,4%)  
 No alto (III, IV, V) 7.372 (56,2%) 307 (48,6%)  
pas, median (IQR)  131 (115;150) 129 (110;149) 0,027* 
pad, median (IQR)  78 (66;89) 75 (63;88) 0,002* 
pam, median (IQR)  96.3 (83.7;108.0) 93.7 (80.6;107.3) 0,006* 
fc, median (IQR)  88 (74;103) 92 (77;107) <0,001* 
fr, median (IQR)  18 (16;18) 18 (16;20) 0,007* 
sat, median (IQR)  97 (95;98) 97 (94;98) <0,001* 
glasgow, median (IQR)  15 (15;15) 15 (15;15) <0,001* 



 56    
  

Tabla N° 06: Outliers superiores según el servicio clínico de hospitalización al que 

ingresaron desde urgencia 

  

La Tabla N° 07 presenta los diagnósticos de ingreso por urgencia (según código CIE-

10) con al menos 20 casos, identificando aquellos asociados a un mayor y menor 

riesgo de ser outliers superiores. Los diagnósticos con mayor probabilidad de 

convertirse en outlier superior fueron el absceso periamigdalino (OR: 16,23), 

seguido de artritis piógena (OR: 6,61), dolor (OR: 5,50), asma (OR: 4,39), historia 

personal de autolesión (OR: 4,18), insuficiencia respiratoria (OR: 2,14), 

gastroenteritis y colitis (OR: 2,57) y sepsis (OR: 1,97). En contraste, algunos 

diagnósticos se asociaron a un riesgo significativamente menor, entre ellos destacan 

apendicitis aguda (OR: 0,19), infarto agudo de miocardio (OR: 0,19), colecistitis 

(OR: 0,21), angina de pecho (OR: 0,20) y sangrado gastrointestinal (OR: 0,37), todos 

con odds ratios inferiores a 1.  

  

 

 

Servicio n Outlier  superior (%)  OR p-valor 
UNIDAD DE PACIENTES CRÍTICOS 4.757 293 (6,2%) 1,68 <0,001* 

CIRUGIA 2.887 51 (1,8%) 0,32 <0,001* 
MEDICINA INTERNA 1.949 89 (4,6%) 0,99 0,998
UNIDAD CORONARIA 831 23 (2,8%) 0,58 0,012* 

TRAUMATOLOGIA 612 35 (5,7%) 1,28 0,207
NEFROLOGIA 529 31 (5,9%) 1,31 0,189

NEUROCIRUGIA 430 26 (6,0%) 1,35 0,178
GASTROENTEROLOGIA 390 13 (3,3%) 0,71 0,279

CARDIOLOGIA 371 6 (1,6%) 0,34 0,008* 
NEUROLOGIA 322 15 (4,7%) 1,02 1

UROLOGIA 308 7 (2,3%) 0,48 0,067
GERIATRIA 171 6 (3,5%) 0,75 0,619

OTORRINOLARINGOLOGIA 122 32 (26,2%) 7,73 <0,001* 
PSIQUIATRIA 27 5 (18,5%) 4,75 0,003* 
PEDIATRIA 18 0 (0,0%) 0,58 0,713

MEDICINA FISICA Y REHABILITAC. 13 0 (0,0%) 0,8 0,898

15 0 (0,0%) 0,69 0,816HOSPITALIZACIÓN EN URGENCIA
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Tabla N° 07: Diagnósticos de ingreso (CIE-10) asociados a mayor o menor riesgo 
de ser outlier superior 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diagnóstico (CIE10) n Outlier  superior (%)  OR p-valor 

Sepsis (A41) 852 70 (8,2%) 1,97 <0,001* 
Insuficiencia respiratoria (J96) 284 26 (9,2%) 2,14 <0,001* 
Gastroenteritis y colitis (K52) 64 7 (10,9%) 2,57 0,033* 
Absceso periamigdalinoa (J36) 63 27 (42,9%) 16,23 <0,001* 

Historia personal de autolesión (Z91) 30 5 (16,7%) 4,18 0,006* 
Artritis piógena (M00) 25 6 (24,0%) 6,61 <0,001* 

Dolor (R52) 24 5 (20,8%) 5,5 <0,001* 
Asma (J45) 23 4 (17,4%) 4,39 0,015* 

Apendicitis aguda (K35) 650 6 (0,9%) 0,19 <0,001* 
Colecistitis (K81) 496 5 (1,0%) 0,21 <0,001* 

Sangrado gastrointestinal (K92) 391 7 (1,8%) 0,37 0,010* 
Angina de pecho (I20) 336 0 (0,0%) 0,03 <0,001* 

Infarto agudo de miocardio (I21) 331 3 (0,9%) 0,19 0,002* 

MAYOR RIESGO

MENOR RIESGO
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7.4 Comparar modelos predictivos basados en algoritmos de aprendizaje automático que 

permita anticipar, desde la atención de urgencia, a los pacientes con mayor riesgo de 

transformarse en outliers superiores (OE4). 

 

Para la elaboración de este trabajo se implementaron distintos algoritmos de 

clasificación, entre ellos Regresión Logística, Random Forest, XGBoost, LightGBM y 

Redes Neuronales Perceptrón Multicapa (MLP), utilizando las bibliotecas Scikit-learn 

y TensorFlow en Python, comparando su rendimiento mediante métricas de precisión, 

recall, F1-score y AUC ROC, en una cohorte de validación independiente (año 2022).  

  

En todos los casos, el entrenamiento inicial se realizó con el total de 15 variables. 

Durante la fase inicial del modelado se identificó que varias de las variables presentaban 

un alto grado de colinealidad entre sí, lo que podía conducir a redundancia en la 

información aportada al modelo. Asimismo, se observó que ciertas variables exhibían 

una baja correlación con la variable dependiente, lo que sugería un aporte marginal en 

la capacidad explicativa. La inclusión de este tipo de predictores no solo podía introducir 

ruido estadístico, sino también incrementar de manera innecesaria los costos 

computacionales y, en consecuencia, afectar de forma negativa el desempeño y la 

capacidad de generalización del modelo. Con el objetivo de optimizar la parsimonia y 

mejorar la precisión predictiva, se implementó un proceso de selección de características 

mediante el método Forward Selection, el cual permitió priorizar aquellas variables con 

mayor relevancia y excluir las que no contribuían significativamente al modelo. El 

método Forward Selection corresponde a una técnica de selección secuencial de 

características utilizada en el ámbito del aprendizaje automático y la estadística. Su 

procedimiento consiste en iniciar con un modelo vacío, sin predictores, e ir 

incorporando progresivamente las variables que aportan mayor mejora al desempeño 

del modelo según un criterio predefinido. En cada iteración, se evalúa la inclusión de 

todas las variables candidatas restantes y se selecciona aquella que genere el mayor 

incremento en la capacidad predictiva. Este proceso se repite hasta que la adición de 

nuevas variables no aporte beneficios significativos al modelo. De esta manera, Forward 

Selection permite construir un conjunto parsimonioso de predictores, reduciendo la 

redundancia, mejorando la interpretabilidad y optimizando la eficiencia computacional.  
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Con el propósito de evaluar la capacidad de distintos algoritmos de aprendizaje 

supervisado para predecir la probabilidad de que un paciente se clasifique como outlier 

superior, es decir, que presente una estancia hospitalaria prolongada en relación con su 

Grupo Relacionado por Diagnóstico (GRD), se realizó un análisis comparativo del 

desempeño de siete modelos: Regresión Logística, Random Forest, XGBoost, 

LightGBM, Redes Neuronales (MLP), Support Vector Classifier (SVC) y Naive Bayes. 

Dado el marcado desbalance entre las clases (proporción considerablemente menor de 

pacientes outliers superiores respecto a los inliers), cada modelo se implementó 

utilizando su versión ajustada para datos desbalanceados (imbalance-aware), aplicando 

técnicas de ponderación interna o ajuste de pesos (class_weight, scale_pos_weight, 

sample_weight o priors) con el fin de optimizar la sensibilidad hacia la clase minoritaria 

y reducir el sesgo en la clasificación.  

  

Los resultados obtenidos (Figura N° 08) muestran valores de AUC comprendidos entre 

0.590 y 0.663, lo que evidencia una capacidad de discriminación moderada y 

relativamente homogénea entre los modelos. Los algoritmos Naive Bayes (AUC = 

0.663) y Regresión Logística (AUC = 0.662) alcanzaron el mejor rendimiento global, 

seguidos de XGBoost (AUC = 0.652). En contraste, XGBoost, Random Forest y 

LightGBM presentaron sobreajuste hacia la clase mayoritaria, y las Redes Neuronales 

MLP el rendimiento más bajo (AUC = 0,590). Las métricas de desempeño más 

detalladas se pueden ver en la Tabla N° 08 
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Figura N° 08 Comparación de modelos predictivos de acuerdo a AUC ROC  

 

Al haber un desbalanceo de datos, se aplicaron diversas técnicas de sobre-muestreo y 

combinación de clases, incluyendo SMOTE (Synthetic Minority Oversampling 

Technique), SMOTEENN y ADASYN (Adaptive Synthetic Sampling); sin embargo, 

estas no lograron mejorar el rendimiento global de los modelos.  

  

Tabla N° 08: Comparación de métricas de desempeño (AUC, precisión, recall y 

F1score) entre los modelos predictivos aplicados.  

 

Algoritmo Variables AUC  Precisión Recall F1-score
Regresión logística 7 0,653 Inlier 0,97 0,57 0,72
   Outlier 0,07 0,66 0,12
Random Forest 5 0,647 Inlier 0,98 0,30 0,47
   Outlier 0,05 0.87 0,10
XGBoost 5 0,652 Inlier 0,98 0,31 0,47
   Outlier 0,05 0,87 0,10
LightGBM 4 0,645 Inlier 0,98 0,30 0,46
   Outlier 0,05 0,88 0,10
RRNN MLP 1 0,555 Inlier 0,98 0,24 0,39
   Outlier 0,05 0,87 0,09
SVC 4 0,630 Inlier 0,96 1,00 0,98
   Outlier 0,00 0,00 0,00
Naive bayes 7 0,663 Inlier 0,97 0,86 0,91
   Outlier 0,09 0,32 0,14
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Los modelos de Regresión Logística y Naive Bayes fueron entrenados utilizando un 

conjunto de siete variables clínicas y administrativas seleccionadas por su relevancia en 

la predicción temprana de estancias hospitalarias prolongadas. Estas variables 

incluyeron: servicio protector (servicio_protector), diagnóstico de riesgo (diag_riesgo), 

Glasgow bajo (glasgow_bajo), diagnóstico protector (diag_protector), triage alto 

(triage_alto), servicio de riesgo (servicio_riesgo) y saturación baja (sat_baja). A partir 

de estas características, la figura N° 08 ilustra el desempeño de ambos modelos 

diferenciando entre la clase minoritaria (outliers superiores) y la clase mayoritaria 

(inliers). 

 

En la predicción de outliers superiores, los modelos muestran un rendimiento limitado, 

con valores de precision bajos y F1-score reducido. Esto sugiere que, aun cuando 

variables como triage alto o saturación baja aportan información temprana sobre la 

gravedad clínica, su capacidad aislada o combinada para anticipar estancias prolongadas 

es insuficiente para discriminar eficazmente esta clase minoritaria. No obstante, el recall 

observado en la Regresión Logística (0,65) indica que el modelo logra identificar una 

proporción relevante de casos verdaderamente prolongados.  

 

En contraste, el desempeño para la clase inlier es considerablemente superior en ambos 

modelos. En el caso del modelo Naive Bayes, los resultados muestran que este algoritmo 

alcanzó un desempeño particularmente favorable en la predicción de inliers. Con un 

AUC de 0,663, el modelo exhibe una capacidad discriminativa comparable e incluso 

superior a la de otros clasificadores evaluados, pero destaca especialmente en las 

métricas asociadas a la clase mayoritaria. La precision para inliers (0,97) indica que casi 

todas las predicciones positivas para esta categoría fueron correctas, mientras que su 

recall (0,86) evidencia que el modelo logró identificar la gran mayoría de los pacientes 

que realmente pertenecían a esta clase. Como resultado, el F1-score de 0,91, el más alto 

entre todos los algoritmos analizados, confirma que Naive Bayes ofrece un equilibrio 

sobresaliente entre precisión y sensibilidad en la detección de inliers. 

  

En suma, aunque las variables seleccionadas permiten un modelamiento robusto para la 

clase inlier, su capacidad para discriminar tempranamente a los outliers Superiores 

resulta más limitada, lo cual es consistente con el carácter multifactorial y poco lineal 
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de las estancias prolongadas y con el marcado desbalance entre ambas clases en el 

conjunto de datos. 

 

Fig N° 09: Comparación de métricas detalladas de los modelos Regresión Logística y 

Naive Bayes según inliers y outliers superiores 

 

 
 

Desde una perspectiva de explicabilidad, el buen desempeño observado en el modelo 

Naive Bayes puede atribuirse a su estructura probabilística simple y altamente 

interpretable, la cual asume independencia condicional entre los predictores y estima la 

probabilidad de cada clase a partir de la contribución individual de cada variable. En el 

contexto de esta tesis, las variables seleccionadas, como triage alto, saturación baja, 

diagnóstico protector o servicio clínico, presentan patrones bien diferenciados para 

caracterizar a los pacientes con estancias dentro de lo esperado, lo que facilita que Naive 

Bayes identifique de forma eficiente combinaciones de atributos frecuentes en la clase 

inlier. Su mecanismo aditivo permite valorar explícitamente cómo cada predictor 

incrementa o reduce la probabilidad de pertenecer a dicha clase, evitando la 

sobreparametrización y minimizando el impacto de la colinealidad, elementos que 

afectan a modelos más complejos. Esta simplicidad estructural, sumada a su estabilidad 

frente al desbalance de clases, explica por qué Naive Bayes logra un rendimiento 

superior en la predicción de pacientes con estancias hospitalarias no prolongadas. 
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7.5 Identificar y analizar los factores que dificultan y limitan la capacidad predictiva de los 

modelos, comparados para la predicción de outliers superiores (OE5). 

 

Después del análisis de los datos podemos nombrar los factores que dificultan la 

predicción de outliers superiores: 

- La baja proporción de casos considerados outliers superiores, ya que sólo 

equivalía al 4,6 % de los casos, esto genera un marcado desbalance en la variable 

objetivo, provocando que los modelos tiendan a privilegiar la clase mayoritaria 

(inliers). Este fenómeno afecta de manera significativa la sensibilidad, 

dificultando la identificación de verdaderos positivos incluso en presencia de 

estrategias de ponderación o técnicas de sobremuestreo. 

- Alta heterogeneidad de diagnósticos y procedimientos, ya que no se concentran 

en unos pocos GRD, sino que están distribuidos en múltiples categorías clínicas 

con diferentes perfiles (por ejemplo, infecciones respiratorias, procedimientos 

quirúrgicos, trastornos metabólicos, etc.). Esta fragmentación reduce la 

posibilidad de identificar patrones consistentes que puedan ser capturados por 

modelos supervisados, afectando la reproducibilidad y coherencia interna de las 

predicciones. 

- Otro elemento crítico corresponde a la presencia de factores no observados al 

ingreso, los cuales ejercen un rol determinante en la prolongación de la estancia 

hospitalaria. Aunque se identificaron diferencias significativas en variables 

clínicas tempranas, como presión arterial, frecuencia respiratoria, nivel de 

conciencia o ingreso a UPC, muchos factores que condicionan estancias 

prolongadas (complicaciones intrahospitalarias, comorbilidades no registradas, 

calidad de cuidados, evolución clínica inesperada) no están disponibles en la 

etapa de urgencia, si no post admisión hospitalaria. La ausencia de estos 

determinantes limita intrínsecamente la capacidad del modelo para capturar el 

riesgo real de prolongación desde el inicio de la hospitalización. 

- Solapamiento entre grupos en variables clínicas, aunque existen diferencias entre 

inliers y outliers en varios signos vitales (como PAM, FC, FR o Glasgow), los 

rangos intercuartílicos se superponen considerablemente, que indica la ausencia 

de umbrales fisiológicos que permitan una discriminación temprana clara, 
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dificultando la construcción de fronteras de decisión robustas por parte de los 

modelos supervisados. 

- No existe relación no lineal entre GRD y días como outlier superior, que el exceso 

de días muestra una gran dispersión y asimetría en los días extra como outlier. La 

amplia dispersión, asimetría y variabilidad inter-GRD en los días excedentes 

sugiere que la prolongación de la estancia obedece a dinámicas complejas y 

multifactoriales, lo que desafía la capacidad de los modelos para capturar estas 

relaciones de manera estable. 

- Finalmente, se identificaron GRD con altas proporciones de outliers pero con 

tamaños muestrales muy reducidos, lo que disminuye su capacidad de influir en 

modelos generalizados y puede introducir ruido en el proceso de aprendizaje 

cuando se incorporan de manera directa como predictores. 

 

En contraste con estas limitaciones, los pacientes inliers presentan características que 

favorecen una predicción más estable y consistente. Al constituir la gran mayoría de los 

casos, su representación amplia permite que los modelos aprendan con mayor solidez los 

patrones asociados a estancias hospitalarias dentro del rango esperado. Además, los inliers 

exhiben una menor variabilidad clínica y una mayor homogeneidad diagnóstica, lo que 

facilita la identificación de relaciones más directas entre las variables registradas al ingreso 

y su evolución hospitalaria. La ausencia de complicaciones intrahospitalarias graves, la 

menor presencia de factores no observados y la mayor estabilidad en parámetros fisiológicos 

precoces reducen el solapamiento en las distribuciones y permiten que los modelos 

establezcan fronteras de decisión más claras. En conjunto, estas condiciones explican por 

qué, aun cuando los modelos fueron insuficientes para predecir de forma precisa a los outliers 

superiores, sí lograron identificar con alta certeza a los pacientes inliers. 
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8. DISCUSIÓN 

El presente estudio permitió caracterizar integralmente el comportamiento de los pacientes con 

estancias hospitalarias prolongadas y outliers superiores en el HCUCH, así como evaluar la 

capacidad de modelos de aprendizaje automático para predecir outliers superiores al momento 

del ingreso hospitalario. Los resultados muestran que, pese a los avances logrados en la 

descripción del fenómeno y en la construcción de modelos iniciales, la predicción temprana de 

outliers superiores continúa siendo un desafío complejo que responde tanto a limitaciones 

estructurales del sistema GRD como a la naturaleza multifactorial del evento clínico estudiado. 

 

En primer lugar, la caracterización del proceso de obtención del código GRD permitió situar el 

fenómeno dentro de un marco de clasificación retrospectiva que, si bien aporta estandarización y 

robustez administrativa, posee un rezago temporal inherente. Tal como se describe en la literatura 

clásica (45,46) los GRD fueron diseñados para fines de financiamiento y gestión, no para apoyar 

decisiones clínicas prospectivas, lo cual explica su limitada utilidad para anticipar estancias 

prolongadas desde la admisión. Más aún, estudios recientes advierten que la complejidad clínica 

relevante para predecir desviaciones importantes en la estancia no siempre se encuentra registrada 

en las primeras horas del episodio hospitalario (14,47). En este contexto, el presente trabajo 

confirma que la información inicial disponible en urgencia, demográfica, administrativa y signos 

vitales, resulta insuficiente para capturar la totalidad de determinantes que tienden a manifestarse 

durante la evolución hospitalaria. 

 

El análisis descriptivo realizado sobre 13.760 egresos reveló un conjunto coherente de factores 

asociados a estancias prolongadas: mayor edad, nivel crítico de triage, parámetros clínicos 

iniciales alterados y residencia fuera de la región metropolitana. Estos hallazgos son consistentes 

con revisiones internacionales que identifican la gravedad inicial, fragilidad, comorbilidad y 

complejidad diagnóstica como predictores significativos de outliers (12,14). Asimismo, la 

concentración de outliers en patologías como sepsis e insuficiencia respiratoria se alinea con la 

evidencia que muestra que los GRD de naturaleza infecciosa o respiratoria son particularmente 

propensos a generar desviaciones extensas respecto a la mediana de estancia (48). El 

comportamiento observado en los GRD asociados a abscesos periamigdalinos o patologías 

otorrinolaringológicas complejas también replica lo descrito por Bellanger et al. (2013) (17), 

quienes mostraron un comportamiento similar en procedimientos de cabeza y cuello. 
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En cuanto a la capacidad predictiva de los modelos evaluados, los resultados evidencian un 

desempeño moderado, con AUC-ROC entre 0.56 y 0.66. La superioridad relativa de Naive Bayes 

y Regresión Logística coincide con estudios que destacan su estabilidad en contextos de alta 

dimensionalidad y datos desbalanceados (22,38), mientras que el rendimiento más débil de 

Random Forest, XGBoost, LightGBM y MLP refleja su sensibilidad al desbalance extremo del 

evento (<5%). Este comportamiento ha sido ampliamente reportado en la literatura, donde se 

advierte que los modelos basados en árboles y redes neuronales tienden a generar fronteras de 

decisión distorsionadas cuando la clase minoritaria es escasa, aun cuando se aplican técnicas de 

sobremuestreo sintético (38,49). 

 

El uso de técnicas como SMOTE, SMOTEENN y ADASYN no logró mejorar el rendimiento 

predictivo, e incluso produjo ligeras disminuciones del AUC en ciertos modelos. Este fenómeno 

puede interpretarse a la luz de los estudios comparativos que muestran que, cuando la clase 

minoritaria es extremadamente heterogénea, como ocurre con los outliers superiores, la síntesis 

artificial de casos puede generar instancias poco realistas que introducen ruido y reducen la 

capacidad de generalización (47,50). En este sentido, los resultados del presente trabajo coinciden 

con la evidencia reciente que sugiere que, para fenómenos clínicos de baja prevalencia y perfiles 

diversos, la generación de datos sintéticos no siempre constituye una estrategia eficaz. 

 

Otro aspecto relevante es el efecto del solapamiento clínico entre inliers y outliers. A pesar de 

que varios signos vitales mostraron diferencias estadísticamente significativas, los rangos 

intercuartílicos se superponen de manera sustancial, lo que impide establecer umbrales 

discriminantes robustos. Este hallazgo ha sido descrito en múltiples estudios de predicción 

temprana en EHR, donde la variabilidad fisiológica inicial no ofrece suficiente poder 

discriminante para anticipar eventos complejos como la estancia prolongada, que dependen de 

complicaciones posteriores, respuesta al tratamiento y factores organizacionales (22,51). 

 

Desde una perspectiva institucional, este estudio también pone en relieve limitaciones operativas 

asociadas a la calidad y disponibilidad de los datos. La base GRD se destacó por su completitud 

y estandarización, coherente con lo reportado en experiencias europeas donde la calidad del 

CMBD es clave para el análisis de desempeño hospitalario (15,52). En contraste, la base de datos 

del Servicio de Urgencia mostró limitaciones en la profundidad de las variables clínicas y 

presencia de valores atípicos, situación también descrita en la literatura sobre el uso de EHR para 
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modelamiento predictivo inicial (50). La exclusión de los años 2020–2021 debido al impacto 

epidemiológico de la pandemia refuerza la necesidad de realizar validaciones externas en 

escenarios más habituales. 

 

La interpretabilidad de los datos en este estudio, según los modelos utilizados para predecir 

outliers superiores, principalmente Regresión Logística y Naive Bayes, demostraron ser 

especialmente adecuados debido a su alta interpretabilidad. Ambos permiten identificar de 

manera explícita cómo cada una de las variables clínicas iniciales (triage alto, sat_baja, 

glasgow_bajo, servicio_riesgo, diag_riesgo, diag_protector y servicio_protector) contribuye al 

riesgo de prolongación de la estancia hospitalaria. La Regresión Logística, en particular, ofrece 

coeficientes de fácil interpretación, lo que facilita justificar decisiones clínicas y respaldar 

procesos de auditoría institucional. Al compararlos con modelos más complejos, como Random 

Forest, XGBoost, LightGBM o redes neuronales, se observa que estos últimos no superaron el 

rendimiento de Naive Bayes (AUC 0.663), probablemente debido al desbalance de clases, al 

número limitado de predictores relevantes disponibles al ingreso y a la heterogeneidad 

diagnóstica. Además, estos métodos requieren técnicas adicionales de explicabilidad (como 

SHAP o LIME), lo que incrementa la complejidad y dificulta su implementación práctica en 

entornos clínicos donde la transparencia es esencial. En este contexto, los modelos interpretables 

empleados resultan metodológicamente coherentes con los objetivos del estudio. Aunque el 

rendimiento predictivo fue moderado, la claridad respecto a los factores asociados al riesgo de 

convertirse en outlier superior constituye un aporte relevante para la gestión hospitalaria basada 

en datos. Así, estos modelos no solo permiten comprender mejor el fenómeno, sino que también 

pueden integrarse como herramientas de apoyo para la estratificación temprana del riesgo, la 

planificación de recursos y la mejora de los procesos clínico-administrativos. 

 

Finalmente, las implicancias clínicas y administrativas de este trabajo son relevantes. Los 

modelos construidos, aunque no alcanzaron una capacidad predictiva adecuada para uso clínico, 

sí mostraron una excelente identificación de inliers, lo que podría permitir su utilización como 

herramienta de tamizaje negativo en el ingreso. De esta manera, el sistema podría descartar 

tempranamente a los pacientes con baja probabilidad de prolongarse, focalizando los recursos 

analíticos y clínicos en los casos potencialmente complejos. Este enfoque es congruente con 

propuestas recientes de predicción temprana en sistemas de salud que plantean modelos de 

estratificación progresiva en lugar de decisiones binarias (20,47). 
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Las limitaciones del estudio incluyeron el desbalance extremo de la clase outlier superior, la 

heterogeneidad diagnóstica del conjunto GRD, la falta de variables longitudinales y de laboratorio 

al ingreso, el solapamiento en rangos clínicos entre grupos, y la naturaleza retrospectiva de los 

datos disponibles. 

 

Futuros trabajos deberían integrar datos longitudinales, notas clínicas, resultados de laboratorio, 

comorbilidades estructuradas, e incluso modelos de aprendizaje profundo basados en secuencias 

(RNN, transformers), en línea con los desarrollos recientes de DeepDRG y DRG-LLaMA (20,22). 

Asimismo, es recomendable avanzar hacia validaciones externas multiservicio y estudiar 

modelos híbridos que combinen información clínica, administrativa y organizacional. 
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9. CONCLUSIONES 

El presente estudio permitió desarrollar un análisis sistemático orientado a la identificación 

temprana de pacientes con riesgo de estancia hospitalaria prolongada y outliers superiores a partir 

de información disponible en el momento del ingreso por el Servicio de Urgencia del Hospital 

Clínico de la Universidad de Chile (HCUCH). Mediante la aplicación de técnicas de aprendizaje 

automático supervisado, se buscó establecer un modelo predictivo capaz de anticipar la evolución 

hospitalaria y contribuir a la optimización de la gestión clínica y de recursos. 

 

Se evidenció que el sistema GRD, si bien constituye una herramienta para la clasificación 

retrospectiva de episodios hospitalarios, presenta limitaciones significativas en su capacidad 

predictiva temprana. Los resultados mostraron que los pacientes definidos como outliers 

superiores representan una proporción reducida (4,6 %) del total de egresos, pero concentran una 

carga asistencial y económica considerable, con una mediana de 27 días de hospitalización, muy 

superior a la de los inliers (6 días). 

 

El análisis de las variables iniciales permitió identificar servicios clínicos y diagnósticos 

asociados a un mayor riesgo de estancia hospitalaria prolongada. Los servicios de Unidad de 

Pacientes Críticos (UPC), Otorrinolaringología y Psiquiatría mostraron una mayor proporción de 

pacientes clasificados como outliers superiores, constituyéndose en áreas de mayor riesgo 

institucional. En contraste, los servicios de Cirugía, Cardiología y Unidad Coronaria se 

comportaron como factores protectores, asociados a una menor probabilidad de prolongación de 

la estancia. En el ámbito diagnóstico, los hallazgos identificados previamente en los resultados 

muestran que ciertos grupos de patologías se asocian de manera diferencial con el riesgo de ser 

outlier superior. En particular, algunos diagnósticos clínicos demostraron una relación 

significativa con una mayor probabilidad de ser considerado outlier superior , mientras que otros 

se vincularon con un riesgo sustancialmente menor. Estos hallazgos refuerzan la importancia de 

la evaluación clínica inicial y la identificación temprana de diagnósticos de riesgo como 

elementos clave para anticipar la evolución del paciente y optimizar la planificación hospitalaria 

y la asignación de recursos desde el momento del ingreso. 

 

Los algoritmos Naive Bayes (AUC = 0.663) y Regresión Logística (AUC = 0.662) alcanzaron el 

mejor rendimiento global, seguidos de XGBoost (AUC = 0.652). Este rendimiento sugiere que, 

si bien las herramientas de machine learning son prometedoras, su eficacia depende de una mayor 
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calidad, profundidad y balance de los datos clínicos utilizados para el entrenamiento. La baja 

prevalencia de outliers superiores y la heterogeneidad diagnóstica constituyen factores limitantes 

relevantes que deben abordarse en futuras versiones del modelo. En conjunto, los hallazgos 

permiten concluir que la predicción precoz de outliers superiores es factible, pero requiere la 

integración de fuentes de datos más amplias, incluyendo variables fisiológicas, evolutivas y 

contextuales, así como el uso de técnicas avanzadas de balanceo de clases y optimización de 

hiperparámetros. 

 

Finalmente, este estudio sienta las bases para el desarrollo de un sistema predictivo de apoyo a la 

decisión clínica en el contexto hospitalario, orientado a optimizar la asignación de recursos y  

mejorar la eficiencia operacional. Aunque los modelos evaluados no lograron predecir con alta 

exactitud a los pacientes con estancias prolongadas (outliers superiores), sí demostraron una 

capacidad notablemente superior para identificar con precisión a aquellos cuya evolución se 

mantendría dentro de los rangos esperados (inliers). Este hallazgo, lejos de ser una limitación, 

constituye un aporte relevante: disponer de una herramienta confiable para reconocer 

tempranamente a los pacientes con bajo riesgo de prolongación permite focalizar los esfuerzos 

clínicos y administrativos en el subgrupo más complejo y potencialmente problemático. 

 

La elevada certidumbre en la predicción de inliers ofrece un valor estratégico en el Servicio de 

Urgencia, al posibilitar un tamizaje inicial que contribuya a una planificación más eficiente de 

camas, recursos críticos y tiempos de hospitalización. En un entorno donde la disponibilidad de 

recursos es limitada, contar con un modelo que discrimine con claridad a los pacientes de bajo 

riesgo permite redirigir la atención hacia aquellos con mayor probabilidad de evolucionar 

desfavorablemente, anticipando necesidades y facilitando una gestión más proactiva. 

 

En perspectiva, la integración de este enfoque predictivo en los procesos de admisión hospitalaria 

podría constituir un instrumento relevante para la gestión clínica y la planificación institucional. 

Si se complementa en el futuro con variables clínicas más ricas, información longitudinal y 

modelos híbridos, este sistema podría evolucionar hacia una herramienta robusta y aplicable en 

tiempo real, alineada con los principios de eficiencia, seguridad del paciente y atención centrada 

en la persona. 

 



 71    
  

10. PERSPECTIVAS FUTURAS 

 

Refinamiento metodológico y expansión: Una de las principales proyecciones de este trabajo 

consiste en profundizar y ampliar el modelo predictivo mediante la incorporación de nuevas 

fuentes de datos clínicos. En una futura fase, resulta fundamental integrar variables derivadas de 

exámenes de laboratorio, tales como hemograma, marcadores inflamatorios (PCR, 

procalcitonina), función renal, electrolitos y gases arteriales. Estas variables poseen un alto poder 

discriminativo en cuadros clínicos complejos y podrían mejorar sustancialmente la capacidad del 

modelo para identificar precozmente a los outliers superiores. Asimismo, la integración de 

variables temporales, como la evolución de signos vitales, registros seriados de laboratorio o 

intervenciones diagnósticas durante las primeras horas de hospitalización, permitiría capturar la 

dinámica clínica del paciente, avanzando hacia modelos temporales más robustos, como LSTM 

o modelos secuenciales. 

 

Un segundo aspecto dentro del refinamiento metodológico se relaciona con la optimización del 

proceso de selección de variables. Si bien en esta tesis se utilizó un enfoque basado en Forward 

Selection y criterios de significancia y rendimiento, futuras investigaciones podrían explorar 

técnicas más avanzadas, como selección basada en regularización (LASSO, Elastic Net), 

algoritmos genéticos o métodos de embedded feature selection propios de modelos de ensamblaje. 

Esto permitiría identificar con mayor precisión cuáles variables, demográficas, administrativas o 

clínicas, aportan efectivamente al rendimiento del modelo e incorporar únicamente aquellas que 

maximicen la generalización. 

 

Adicionalmente, una línea relevante es ampliar el período de predicción y la ventana de análisis, 

evaluando si el modelo puede anticiparse no solo al ingreso, sino también durante las primeras 6, 

12 o 24 horas de estancia hospitalaria. Esto abriría la posibilidad de evaluar modelos de predicción 

dinámica, donde el riesgo de convertirse en outlier superior puede actualizarse conforme avanza 

la hospitalización, enriqueciendo la utilidad clínica del modelo. Del mismo modo, incorporar 

técnicas de Procesamiento de Lenguaje Natural (PLN) para analizar texto libre proveniente de 

notas médicas, epicrisis o motivos de consulta permitiría capturar información cualitativa que 

actualmente no es utilizada y que podría ser altamente predictiva 
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Integración de un modelo en la práctica hospitalaria: Un paso natural tras los resultados 

obtenidos es avanzar hacia un proceso de implementación operativa del modelo en el entorno 

clínico real del HCUCH. Esto implica desarrollar un prototipo de herramienta informática o panel 

de riesgo integrado a los sistemas de información hospitalaria que permita alertar tempranamente 

sobre pacientes con alta probabilidad de transformarse en outliers superiores. La validación del 

modelo en condiciones reales requerirá un proceso de co-diseño con equipos clínicos, 

codificadores GRD y unidades de gestión hospitalaria, para asegurar que el sistema sea 

interpretativo, clínicamente útil y operacionalmente factible. Asimismo, futuras investigaciones 

deberán evaluar el impacto clínico y organizacional del modelo, midiendo indicadores como 

disminución de estancias prolongadas, uso eficiente de camas, reasignación de recursos o 

capacidad de anticipación de equipos clínicos. 

 

Análisis de inliers superiores: Finalmente, un ámbito de investigación complementario y 

altamente relevante para este proyecto es el análisis de los inliers superiores, definidos como 

aquellos pacientes cuya estancia hospitalaria resulta anormalmente corta respecto al tiempo 

esperado para su GRD. Aunque con frecuencia se asocian a episodios clínicamente más simples 

o a una resolución asistencial altamente eficiente, su estudio también puede revelar potenciales 

inconsistencias, variabilidad injustificada o problemas en el proceso de atención. 

 

Desde la perspectiva de esta tesis, centrada en la detección precoz de outliers superiores, 

incorporar el análisis de los inliers superiores permitiría comprender mejor la distribución de la 

estancia hospitalaria. Además, el estudio de este grupo permitiría identificar patrones de alta 

eficiencia asistencial que podrían servir como referencia para mejorar la gestión hospitalaria, 

optimizar flujos, y promover buenas prácticas.  

 

Incorporar el análisis de los inliers superiores en investigaciones futuras contribuiría, por tanto, a 

obtener una visión más integral del comportamiento de los tiempos de hospitalización en el 

HCUCH. De este modo, sería posible complementar la predicción de outliers superiores con una 

evaluación más amplia de la variabilidad asistencial y de los factores que influyen tanto en las 

estancias excesivamente prolongadas como en las anormalmente cortas. Esto permitiría reforzar 

el aporte de los GRD como herramienta de monitoreo, auditoría y mejora continua en los procesos 

hospitalarios. 
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12. ANEXOS 

 

 

Anexo N° 01: Categorías diagnósticas mayores (CDM)  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CDM Descripción 
1 Enfermedades y trastornos del sistema nervioso 
2 Enfermedades y trastornos del ojo 
3 Enfermedades y trastornos de oído, nariz, boca y garganta 
4 Enfermedades y trastornos del aparato respiratorio 
5 Enfermedades y trastornos del aparato circulatorio 
6 Enfermedades y trastornos del aparato digestivo 
7 Enfermedades y trastornos de hígado, sistema biliar y páncreas 
8 Enfermedades y trastornos del sistema músculo-esquelético y tejido conectivo 
9 Enfermedades y trastornos de piel, tejido subcutáneo y mama 

10 Enfermedades y trastornos del sistema endocrino, nutricional y metabólico 
11 Enfermedades y trastornos del aparato urinario 
12 Enfermedades y trastornos del aparato reproductor masculino 
13 Enfermedades y trastornos del aparato reproductor femenino 
14 Parto 
15 Recién nacidos y otros neonatos 
16 Enfermedades y trastornos de sangre, órganos hematopoyéticos y del sistema inmunológico 
17 Enfermedades y trastornos mieloproliferativos y neoplasias mal diferenciadas 
18 Enfermedades infecciosas y parasitarias sistémicas o de sitios no especificados 
19 Enfermedades y trastornos mentales 
20 Abuso y dependencia de drogas y alcohol 
21 Lesiones, envenenamientos y efectos tóxicos de fármacos 
22 Factores que influyen en el estado de salud y en el contacto con los servicios sanitarios 
23 Visitas médicas ambulatorias 
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Anexo N° 02: Tipos de IR-GRD  
 

  
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tipo Descripción
1 Procedimientos en pacientes hospitalizados
2 Procedimientos mayores en pacientes ambulatorios
3 Procedimiento significativo ambulatorio
4 Médicos para pacientes hospitalizados
5 Médicos para pacientes ambulatorios
6 Partos hospitalizados
7 Partos ambulatorios
8 Recién nacidos hospitalizados
9 Recién nacidos ambulatorios
0 Error
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Anexo N° 03 
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